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A Dynamic Programming Algorithm for RNA Structure
Prediction Including Pseudoknots
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We describe a dynamic programming algorithm for predicting optimal
RNA secondary structure, including pseudoknots. The algorithm has a
worst case complexity of O(N°) in time and (O(N*) in storage. The descrip-
tion of the algorithm is complex, which led us to adopt a useful graphical
representation (Feynman diagrams) borrowed from quantum field theory.
We present an implementation of the algorithm that generates the
optimal minimum energy structure for a single RNA sequence, using
standard RNA folding thermodynamic parameters augmented by a few
parameters describing the thermodynamic stability of pseudoknots. We
demonstrate the properties of the algorithm by using it to predict struc-
tures for several small pseudoknotted and non-pseudoknotted RNAs.
Although the time and memory demands of the algorithm are steep, we
believe this is the first algorithm to be able to fold optimal (minimum
energy) pseudoknotted RNAs with the accepted RNA thermodynamic

model.
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Introduction

Many RNAs fold into structures that are import-
ant for regulatory, catalytic, or structural roles in
the cell. An RNA’s structure is dominated by base-
pairing interactions, most of which are Watson-
Crick pairs between complementary bases. The
base-paired structure of an RNA is called its sec-
ondary structure. Because Watson-Crick pairs are
such a stereotyped and relatively simple inter-
action, accurate RNA secondary structure predic-
tion appears to be an achievable goal.

A rather reliable approach for RNA structure
prediction is comparative sequence analysis, in
which covarying residues (e.g. compensatory
mutations) are identified in a multiple sequence
alignment of RNAs with similar structures, but
different sequences (Woese & Pace, 1993). Covary-
ing residues, particularly pairs which covary to
maintain Watson-Crick complementarity, are
indicative of conserved base-pairing interactions.
The accepted secondary structures of most struc-
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tural and catalytic RNAs were generated by com-
parative sequence analysis.

If one has only a single RNA sequence (or a
small family of RNAs with little sequence diver-
sity), comparative sequence analysis cannot be
applied. Here, the best current approaches are
energy minimization algorithms (Schuster et al.,
1997). While not as accurate as comparative
sequence analysis, these algorithms have still pro-
ven to be useful research tools. Thermodynamic
parameters are available for predicting the AG of a
given RNA structure (Freier et al., 1986; Serra &
Turner, 1995). The Zuker algorithm, implemented
in the programs MFOLD (Zuker, 1989a) and
ViennaRNA (Schuster et al., 1994), is an efficient
dynamic programming algorithm for identifying
the globally minimal energy structure for a
sequence, as defined by such a thermodynamic
model (Zuker & Stiegler, 1981, Zuker & Sankoff,
1984; Sankoff, 1985). The Zuker algorithm requires
O(N® time and O(N?) space for a sequence of
length N, and so is reasonably efficient and practi-
cal even for large RNA sequences. The Zuker
dynamic programming algorithm was sub-
sequently extended to allow experimental con-
straints, and to sample suboptimal folds (Zuker,
1989b). McCaskill’s variant of the Zuker algorithm
calculates probabilities (confidence estimates) for
particular base-pairs (McCaskill, 1990).
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One well-known limitation of the Zuker algor-
ithm is that it is incapable of predicting so-called
RNA pseudoknots. This is the problem that we
address here.

The thermodynamic model for non-pseudo-
knotted RNA secondary structure includes some
stereotypical interactions, such as stacked base-
paired stems, hairpins, bulges, internal loops, and
multiloops. Formally, non-pseudoknotted struc-
tures obey a “nesting’” convention: that for any
two base-pairs 7, j and k, [ (where i<j, k<] and
i<k), either i<k<lI<iori<j<k<l Itis precisely
this nesting convention that the Zuker dynamic
programming algorithm relies upon to recursively
calculate the minimal energy structure on progress-
ively longer subsequences. An RNA pseudoknot is
defined as a structure containing base-pairs which
violate the nesting convention. An example of a
simple pseudoknot is shown in Figure 1.

RNA pseudoknots are functionally important in
several known RNAs (ten Dam ef al., 1992). For
example, by comparative analysis, RNA pseudo-
knots are conserved in ribosomal RNAs, the cataly-
tic core of group I introns, and RNase P RNAs.
Plausible pseudoknotted structures have been pro-
posed (Pleij et al., 1985), and recently confirmed
(Kolk et al., 1998) for the 3’ end of several plant
viral RNAs, where pseudoknots are apparently
used to mimic tRNA structure. In vitro RNA evol-
ution (SELEX) experiments have yielded families
of RNA structures which appear to share a com-
mon pseudoknotted structure, such as RNA
ligands selected to bind HIV-1 reverse transcriptase
(Tuerk et al., 1992).

Most methods for RNA folding which are
capable of folding pseudoknots adopt heuristic
search procedures and sacrifice optimality.
Examples of these approaches include quasi-Monte
Carlo searches (Abrahams et al., 1990) and genetic
algorithms (Gultyaev et al., 1995; van Batenburg
et al., 1995). These approaches are inherently
unable to guarantee that they have found the
“best” structure given the thermodynamic model,
and consequently unable to say how far a given
prediction is from optimality.

A different approach to pseudoknot prediction
based on the maximum weighted matching
(MWM) algorithm (Edmonds, 1965; Gabow, 1976)
was introduced by Cary & Stormo (1995) and
Tabaska et al. (1998). Using the MWM algorithm,
an optimal structure is found, even in the presence
of complicated knotted interactions, in O(N°) time
and O(N?) space. However, MWM currently seems
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Figure 1. A simple pseudoknot. In a pseudoknot,
nucleotides inside a hairpin loop pair with nucleotides
outside the stem-loop.

best suited to folding sequences for which a pre-
vious multiple alignment exists, so that scores may
be assigned to possible base-pairs by comparative
analysis. It is not clear to us that the MWM algor-
ithm will be amenable to folding single sequences
using the relatively complicated Turner thermo-
dynamic model. However, we believe that this was
the first work that indicated that optimal RNA
pseudoknot predictions can be made with poly-
nomial time algorithms. It had been widely
believed, but never proven, that pseudoknot pre-
diction would be an NP problem (NP, non-deter-
ministic polynomial; e.g. only solvable by heuristic
or brute force approaches).

Here, we describe a dynamic programming
algorithm which finds optimal pseudoknotted
RNA structures. We describe the algorithm using
a diagrammatic representation borrowed from
quantum field theory (Feynman diagrams). We
implement a version of the algorithm that finds
minimal energy RNA structures using the standard
RNA secondary structure thermodynamic model
(Freier ef al., 1986, Serra & Turner, 1995), augmen-
ted by a few pseudoknot-specific parameters that
are not yet available in the standard folding par-
ameters, and by coaxial stacking energies (Walter
et al., 1994) for both pseudoknotted and non-pseu-
doknotted structures. We demonstrate the proper-
ties of the algorithm by testing it on several small
RNA structures, including both structures thought
to contain pseudoknots and structures thought not
to contain pseudoknots.

Algorithm

Here, we will introduce a diagrammatic way of
representing RNA folding algorithms. We will
start by describing the Nussinov algorithm
(Nussinov et al.,, 1978), and the Zuker-Sankoff
algorithm (Zuker & Sankoff, 1984; Sankoff, 1985)
in the context of this representation. Later on we
will extend the diagrammatic representation to
include pseudoknots and coaxial stackings. The
Nussinov and Zuker-Sankoff algorithms can be
implemented without the diagrammatic represen-
tation, but this representation is essential to man-
age the complexity introduced by pseudoknots.

Preliminaries

From here on, unless otherwise stated, a flat
continuous line will represent the backbone of an
RNA sequence with its 5-end placed in the left-
hand side of the segment. N will represent the
length (in number of nucleotides) of the RNA.

Secondary interactions will be represented by
wavy lines connecting the two interacting positions
in the backbone chain, while the backbone itself
always remains flat. No more than two bases are
allowed to interact at once. This representation
does not provide insight about real (three-dimen-
sional) spatial arrangements, but is very con-
venient for algorithmic purposes. When necessary
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for clarification, single-stranded regions will be
marked by dots, but when unambiguous, dots will
be omitted for simplicity. Using this representation
(Figure 2), we can describe hairpins, bulges, stems,
internal loops and multiloops as simple nested
structures; a pseudoknot, on the other hand, corre-
sponds with a non-nested structure.

Diagrammatic representation of
nested algorithms

In order to describe a nested algorithm we need
to introduce two triangular N x N matrices, to be
called vx and wx. These matrices are defined in the
following way: vx(i, j) is the score of the best fold-
ing between positions i and j, provided that i and j
are paired to each other; whereas wx(i, j) is the
score of the best folding between positions i and j
regardless of whether i and j pair to each other or
not. These matrices are graphically represented in
the form indicated in Figure 3. The filled inner
space indicates that we do not know how many
interactions (if any) occur for the nucleotides
inside, in contrast with a blank inner space which
indicates that the fragment inside is known to be
unpaired. The wavy line in vx indicates that i and j
are definitely paired, and similarly the discontinu-
ous line in wx indicates that the relation between i
and j is unknown. Also part of our convention is
that for a given fragment, nucleotide i is at the 5'-
end, and nucleotide j is at the 3'-end, so that i < j.

The purpose of the nested dynamic program-
ming algorithm is to fill the vx and wx matrices
with appropriate numerical weights by means of
some sort of recursive calculation.

1 wzT j 1 Uz J

Figure 3. The wx and vx matrices.

Roughly speaking a surface is any alternating
sequence of continuous and wavy lines that closes
on itself. An irreducible surface is a surface such
that if one of the H-bonds (or secondary inter-
actions) is broken, there is no other surface con-
tained inside, that is, an IS cannot be “reduced” to
any other surface. The order ¢, of an IS is given by
the number of wavy lines (secondary interactions),
which is equal to the number of continuous-line
intervals. It is easy to see that hairpin loops consti-
tute the IS of ()(1); stems, bulges and internal loops
are all the IS of ((2), and what are referred to in
the literature as “multiloops” are the IS of ¢ > 2.

For nested configurations, our ISs are equivalent
to the “k-loops” defined by Sankoff (1985); how-
ever, the ISs are more general and also include
non-nested structures. A technical report about
irreducible surfaces is available from http://
www.genetics.wustl.edu/eddy/publications/.

The actual recursion for vx is given in Figure 4,
and can be expressed as:

vx(i, j) = optimal

EIS'(i, j)

EIS*(i,j: k, I) + vx(k, 1)

EIS*(i,j:k, 1:m, n) 4 vx(k, I) + vx(m, n)

The recursion for vx includes contributions due 4 i |- . o D
to: hairpins, bulges, internal loops, and multiloops. EIS'(i.j:k. I:m. n . s) + vx(k. ])
But what is special about hairpins, bulges, internal +ox(m, n) + vx(r, s)
loops, and multiloops in this diagrammatic rep- O(5)
resentation? To answer this question we have to
introduce two more definitions: surfaces and irre- )
ducible surfaces (IS). VK, Lm,n,r.s, i<k<lsm<sn<r<s<j]
M
X ;’JWW‘\
Ss sB ¢ H s g H sg" BS

pseudoknot

Figure 2. Diagrammatic representation of the most relevant RNA secondary structures, including a pseudoknot.
The nucleotides of the sequence are represented by dots. Single-stranded regions (SS) are not involved in any second-
ary structure. A hairpin (H) is a sequence of unpaired bases bounded by one base-pair. Stems (S), bulges (B) and
internal loops (IL) are all nested structures bounded by two base-pairs. In a stem, the two base-pairs are contiguous
at both ends. In a bulge, the two base-pairs are contiguous only at one end. In an internal loop, the two base-pairs
are not contiguous at all. Multiloops (M) refer to any structure bounded by three or more base-pairs. Any non-nested

structure is referred to as a pseudoknot.
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Figure 4. General recursion for vx in the nested
algorithm.

Each line gives the formal score of one of the dia-

grams in Figure 4. The diagram on the left is calcu-

lated as the score of the best diagram on the right.
The initialization conditions are:

ox(i,i) = +oo, Vi 1<i<N )

The recursion (1) for vx is an expansion in ISs of
successively higher order.

scoring function for an IS of order n, in which i, is
paired to j.. This general algorithm is quite imprac-
tical, because an IS” which has order vy, ((y), adds
a complexity of O(N*¥ = V) to the calculation. (An
IS” requires us to search through 2y independent
segments in the entire sequence of N nucleotides.
To make it useful, we have to truncate the expan-

Figure 5. Recursion for vx truncated at ¢(0).

pin, bulge, internal loop etc.) are given any special-
ized scores. We only have to provide a specific
score for a base-pair, B. The recursion for vx then
simplifies to Figure 5, and can be cast into the
form:

ox(i,j) = B+wxi+1,j—1) 3)

If we set B=+1, then we have the Nussinov
algorithm (Nussinov et al.,, 1978). The matrix wx;
is similar to wx defined before, with the specifica-
tion of appearing inside a base-pair. This simple
algorithm calculates the folding with the maxi-
mum number of base-pairs.

The next order of complexity we explore corre-
sponds with a truncation at ISs of ¢(2). Hairpin
loops, bulges, stems, and internal loops are treated
with precision by the scoring functions EIS' and
EIS?. The rest of ISs, collected under the name of
multiloops, which are much less frequent than the
previous, are described in an approximate form.
The diagrams of this approximation are given in
Figure 6, and correspond with:

EIS'(i, )

[Vk, I

] 18

ox(i, j) = optimal{ EIS*(i,j : k, I) 4+ vx(k, ]) ] 1s? “)
Pr+M+wx(i+1,k) +wxi(k+1,j—1) ]

multiloop

i <k<I<]

sion in ISs at some order in the recursion for vx in
Figure 4. The symbol ¢(y) indicates the order of IS”
at which we truncate the recursion.

These recursions are equivalent to those pro-
posed by Sankoff (1985) in theorem 2. Notice also
that in defining the recursive algorithm we have
not yet had to specify anything about the particu-
lar manner in which the contribution from differ-
ent ISs are calculated in order to obtain the most
optimal folding.

The simplest truncation is to stop at order zero,
0(0). In this approximation none of the ISs (hair-

M stands for the score for generating a multiloop.
The Turner thermodynamic rules also penalize an
amount for each closing pair in a multiloop. By
starting a multiloop we are specifying already one
of its closing pairs; this closing-pair score is rep-
resented here by P,.

The recursion relations used to fill the wx matrix
include: single-stranded nucleotides, external pairs,
and bifurcations. The actual recursion is easier to
understand by looking at the diagrams involved
(given in Figure 7) and the recursion can be
expressed as:

P+ ox(i, )

Q+wx(i+1,))

wx(i, j) = optimal Q + wx(i,j— 1)

wx(i, k) +wx(k + 1, )

] paired
j| single-stranded (5)

[Vk, i<k<j]. ] bifurcation
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Figure 6. Recursion for vx truncated at ((2).

With the initialization condition:
wx(i,i)=0, Vi 1<i<N (6)

Note that we have two independent matrices, wx
and wx;, which have structurally identical recur-
sions, but completely different interpretations. The
matrix wx;, used to truncate the recursion for vx in
equation (4), is used exclusively for diagrams
which will be incorporated into multiloops,
whereas wx is only used when there are no exter-
nal base-pairs. Therefore, the parameters control-
ling these two recursions will, in general, have
very different values because they have very differ-
ent meanings. Q; is the penalty for an unpaired
nucleotide in a multiloop, and P; is the penalty for
a closing base-pair (e.g. per stem) in a multiloop.
On the other hand, Q represents the score for a
single-stranded nucleotide, and P represents the
score for an external base-pair. In Turner’s thermo-
dynamic rules both Q and P are approximated by
Zero.

Note also that the recursions for wx and wx,
always remain the same, independent of the order
of irreducible surface to which the recursion for vx
has been truncated.

This is the nested algorithm described by
Sankoff (1985) in theorem 3, and is the approxi-
mation that MFOLD (Zuker & Stiegler, 1981) and
ViennaRNA (Schuster et al., 1994) implement.
Higher orders of specificity of the general algor-
ithm are possible, but are certainly more time con-
suming, and they have not been explored so far.
One reason for this relative lack of development is
that there is little information about the energetic
properties of multiloops. The generalized nested
algorithm provides a way to unify the currently
available dynamic algorithms for RNA folding. At
a given order, the error of the approximation is
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Figure 7. Recursion for wx in the nested algorithm.

given by the difference between the assigned score
to multiloops and the precise score that one of
those higher-order ISs deserves.

Description of the pseudoknot algorithm

Pseudoknots are non-nested configurations and
clearly cannot be described with just the wx and vx
matrices we introduced in the previous section.
The key point of the pseudoknot algorithm is the
use of gap matrices in addition to the wx and ovx
matrices. Looking at the graphical representation
of one of the simplest pseudoknots, Figure 8, we
can see that we could describe such a configuration
by putting together two gap matrices with comp-
lementary holes.

The pseudoknot dynamic programming algor-
ithm uses one-hole or gap matrices (Figure 9) as a
generalization of the wx and wvx matrices (cf.
Table 1). Let us define whx(i, j:k, I) as the graph
that describes the best folding that connects seg-
ments [i, k] with [[, j], i < k <1 < j, such that the
relation between i and j and k and [ is undeter-
mined. Similarly, we define vhx(i, j:k, I) as the
graph that describes the best folding that connects
segments [i, k] with [, j], i < k <1 < j, such that i
and j are base-paired and k and [ are also base-
paired. For completeness we have to introduce also

A
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Figure 8. Construction of a simple pseudoknot using
two gap matrices.
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Figure 9. Representation of the gap matrices used in
the algorithm for pseudoknots.

Table 1. Specifications of the matrices used in the
pseudoknot algorithm

i J
TN Iy AN
i J ik 1 i+l k k+15-17

N e

Figure 10. Recursion for vx in the pseudoknot algor-
ithm truncated at O(whx + whx + whx). (Contiguous
nucleotides are represented with explicit dots.)

Matrix Relationship Relationship

(i<k<I<j) ij k1

f;;((ll j]?) Un. dl; f:;f;lme d ) lish a consistent and complete recursion relation?
o . . Here is where the analogy between the gap

ZZ;‘((Z’]] I’(‘ ll)) Ea?rei U dpilred_ 4 matrices and the Feynman diagrams of quantum
, ] K, alre naetermine: . .

yhx(i, jok, 1) Undetermined Paired field theory was of great help (Bjorken & Drell

whx(i, j:k, 1) Undetermined Undetermined 1965).1'

matrix yhx(i, j: k, [) in which k and [ are paired, but
the relation between i and j is undetermined, and
its counterpart zhx(i, j:k, [) in which i and j are
paired, but the relation between k and [ is undeter-
mined.

The non-gap matrices wx, vx are contained as a
particular case of the gap matrices. When there is
no hole, k =1 — 1, then by construction:

whx(i,j: k, k + 1) = wx(i, ) @)

zhx(i,j:k, k+1) =ovx(i,j) Vk, i<k<j

We have introduced the gap matrices as the build-
ing blocks of the algorithm, but how do we estab-

Let us start with the generalization of the recur-
sions for vx and wx in the presence of gap matrices.
A non-gap matrix can be obtained by combining
two gap matrices together, therefore the recursions
for vx and wx add one more diagram with two gap
matrices to recursions (4) and (5). Again the dia-
grammatic representation (Figures 10 and 11) is
more helpful than words in explaining the recur-
sions. (When possible, individual bases are labeled
in the diagrams. Otherwise contiguous nucleotides
are depicted with dots.) Note that the new term
introduced in both recursions involves two gap
matrices. In fact, the recursion is an expansion in
the number of gap matrices.

The recursion for the non-gap matrix vx is given
by (cf. Figure 10):

EIS'(i, )

vx(i. j) = optimaly p 4 M 4 woxy(i + 1, k) + ws(k + 1, — 1),

Vi, k, L7, ]

+ More precisely, the analogy is more cleanly
expressed in terms of Schwinger-Dyson diagrams which
in QFT are used to represent full interacting vertices
and propagators recursively in terms of elementary
interactions.

EIS*(i,j:k, 1) + vx(k, 1)

Pi+ M + Gy + whx(i +1,7:k, )
+whx(K+1,j—1:1-1,r+1)

1 15
1 152
d
] %elii[filoop ®)

non-nested
multiloop

i <k<I<r<j]

The additional parameters for pseudoknots
are: Pj, the score for a pair in a non-nested multi-
loop; M, a generic score for generating a non-
nested multiloop; and G, the score for generating
an internal pseudoknot.
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Figure 11. Recursion for wx in the pseudoknot algor-
ithm truncated at O(whx + whx + whx). (Contiguous
nucleotides are represented with explicit dots.)

Similarly for wx (cf. Figure 11):

a solvable configuration can be decomposed into
a sum of gap matrices according to the rules pro-
vided by our recursions. A non-solvable configur-
ation is one that requires diagrammatic
topologies that involve three or more gap
matrices. That is, a non-solvable configuration
requires us to go to a higher orders in the expan-
sion of the pseudoknot algorithm.

Our algorithm can solve “overlapping pseudo-
knots” (defined as those pseudoknots for which a
planar representation does not require crossing
lines) such as ABAB, ABACBC, ABACBDCD, etc.
The algorithm can also find some ‘“non-planar
pseudoknots” (pseudoknots for which a planar
representation requires crossing lines) such as

P+ vx(i, )

Q+wx(i,j—1i)
wx(i, j) = optimal

Q+wx(i+1,j)

wx(i, k) + wx(k + 1, j)

Gy + whx(i, r:k, 1)
+whx(k+1,7:1-1,vr+1)

] paired

single-stranded

1 nested ©)
bifurcation

non-nested
bifurcation

Where G, denotes the score for introducing a
pseudoknot. We should also remember that the
algorithm uses two different wx matrices depend-
ing on whether the subset i...j is free-standing
(wx) or appears inside a multiloop (in which case
we use wx;). The two recursions are identical
apart from having different parameter values as
described in Table 2.

Practical considerations make us truncate the
expansion at this stage; we will not include dia-
grams that require three or more gap matrices.
This statement should not mislead one into think-
ing that we cannot deal with complicated pseu-
doknots. We define a solvable configuration as
one that can be parsed by our algorithm. That is,

ABCABC (the topology present in Escherichia coli o
mRNA; Gluick et al., 1994), and others. However,
the algorithm is not able to solve all possible
knotted configurations, as for instance a parallel
B-sheet protein interaction ABCADBECD (see
Figure 12 for some details.) For a given configur-
ation we can decide unambiguously whether it is
solvable or not by parsing it according to the
model. However, we still lack a systematic a priori
characterization of the class of configurations that
this algorithm can solve.

Note that two approximations are involved in
the algorithm. Apart from that just mentioned
(truncating the infinite expansion in gap matrices
to make the algorithm polynomial), we also use

Table 2. The parameters for which there is thermodynamic infor-
mation provided by the Turner group

Symbol Scoring parameter for Value (kcal/mol)
EIS! Hairpin loops Varies
EIS? Bulges, stems and internal loops Varies

C Coaxial stacking Varies

P External pair 0

Q Single-stranded base 0

R, L Base dangling off an external pair Dangle + Q
P, Pair in a nested multiloop 0.1

Q; Non-paired base inside multiloop 0.4

Ry, L; Base dangling off a multiloop pair Dangle + Q;
M Nested multiloop 4.6

These parameters are identical with those used in MFOLD (http:/ /www.ibc.

wustl.edu/” zuker/rna).
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the approximation previously introduced for the
nested algorithm (that ISs of ¢.>2 or multiloops
are described in some approximated form). Despite
these limitations, this truncated pseudoknot algor-
ithm seems to be adequate for the currently known
pseudoknots in RNA folding.

The algorithm is not complete until we provide
the full recursive expressions to calculate the gap
matrices. For a given gap matrix, we have to con-
sider all the different ways that its diagram can be
assembled using one or two matrices at a time.
(Again, Feynman diagrams are of great use here.)
The full description of those diagrams is quite
involved and the many technical details will not
add to the clarity of this exposition. In order to
give the reader a feeling for the kind of topologies
the pseudoknot algorithm allows, we provide in
the Appendix a simplified version of the recursions
for the gap matrices in which coaxial stacking or
dangles are excluded (see below).

Coaxial stacking and dangles

It is quite frequent in RNA folding to create a
more stable configuration when two independent
configurations stack coaxially. This occurs, for
instance, when two hairpin loops with their
respective stems are contiguous. Then one of them
can fall on top of the other, creating a more stable

example of a pseudoknot that the
algorithm cannot handle; interlaced
interactions as seen in proteins in
parallel B-sheet (ABCADBECDE).
The assembly of this interaction
using gap matrices would require
us to use four gap matrices at once
- which is not allowed by the
approximation at hand.

configuration than when the two hairpins just
coexist without interaction of any kind.

The algorithm implements coaxial energies for
both nested and non-nested structures. We adopt
the coaxial energies provided by Walter et al.
(1994) for coaxial stacking of nested structures. For
coaxial stacking of non-nested structures we
multiply these previous energies by an estimated
(ad hoc) weighting parameter g < 1.

Using our diagrammatic representation it is
possible to be systematic in describing the poss-
ible coaxial stacking that can occur. In the gener-
al recursion one has to look for contiguous
nucleotides, and allow them to be explicitly
paired (but not to each other). This is best under-
stood with an example. Consider the recursion
for wx in Figure 11, in particular the bifurcation
diagram:

wx(i, j) —> wx(i, k) + wx(k +1,7), Vk,i<k<j

(10)
In order to allow for the possibility of coaxial
stacking, this bifurcation diagram has to be com-
plemented with another one in which the nucleo-
tides of the bifurcation are base-paired:
wx(i, j) — vx(i, k) + ox(k + 1, /) + Ck, i : k+ 1,)),
Vk,i<k<j (11)
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Figure 13. Coaxial stacking. Two base-pair inter-
actions are energetically more favorable when they are
contiguous with each other. Here, we indicate how to
complement the regular bifurcation diagram in wx (left)
with an additional diagram (right) to take into account
such a coaxial stacking configuration. The coaxial scor-
ing function depends on both base-pairs. (Coaxial dia-
grams can be recognized by the empty dots
representing the contiguous coaxially stacking nucleo-
tides.)

This new diagram (Figure 13) indicates that if
nucleotides k and k + 1 are paired to nucleotides
i and j, respectively, that configuration is
specially favored by an amount C(k, i:k+1, )
(presumably negative in energy units) because
both sub-structures, vx(i, k) and vx(k + 1, ), will
stack onto each other.

Similarly, unpaired nucleotides contiguous to a
paired base seem to have a different thermodyn-
amic contribution than other unpaired nucleotides.
In order to take this fact into account, we have to
systematically add dangle diagrams to the various
recursions.

For instance, the dangle diagrams that we have
to add for the recursion of the wx matrix are given
in Figure 14, and correspond with the following
terms in the recursion for wx:

Li,y ;+ox(i+1,j)
wx(i, j) —> | R,y +ox(i,j— 1)

Liyy g+ Ry o Foxi+1,j—1)
12)

The dangle scoring functions, (R, L), depend both on
the dangling bases and the contiguous base-pair.
These dangle energies have been well characterized
by the Turner group (Freier et al., 1986). Dangling
bases can also appear inside multiloop diagrams.
Notice also that the coaxial diagram in equation (11)
really corresponds with four new diagrams because
once we allow pairing, dangling bases also have to
be considered, so the full nearest-neighbour inter-
action is taken into account.

+ Since the implementation of the pseudoknot
algorithm, the Turner group has produced a new
complete and more accurate list of parameters
(Mathews et al., 1998) which we have not yet
implemented.

.Jiiji2}j| ifj::iELj |i4ij:::Lj
fi i1 i+1 i1

Figure 14. Dangles. The figures represent three types
of dangling bases that can contribute to the ungapped
matrix wx. The dangle score function associated with
each of these diagrams depends both on the dangling
bases and the base-pair adjacent to them.

Our pseudoknot algorithm implements both
dangles and coaxial stackings. MFOLD currently
implements only dangles, but will soon
implement coaxials (Mathews et al., 1998). For
purposes of clarity we will not explicitly show
any of the additional diagrams to be included in
the recursions to take care of coaxial stackings
and dangles.

Minimum-energy implementation:
thermodynamic parameters

We have implemented the pseudoknot algorithm
using thermodynamic parameters in order to fill
the scoring matrices, both gapped and ungapped.
For the relevant nested structures, hairpin loops,
bulges, stems, internal loops and multiloops, we
have used the same set of energies as used in
MFOLD.t{ Free energies for coaxial stacking, C,
were those obtained by Walter et al. (1994). Table 2
provides a list of the parameters used for nested
conformations.

For the non-nested configurations, there is not
much thermodynamic information available
(Wyatt et al., 1990; Gluick et al., 1994). This is not
an untypical situation; there is very little thermo-
dynamic information available for regular multi-
loops, let alone for pseudoknots. We had to tune
by hand the parameters related to pseudoknots.
For some non-nested structures we multiplied the
nested parameters by an estimated weighting par-
ameter ¢ < 1. It would be very useful, in order to
improve the accuracy of this thermodynamic
implementation of the pseudoknot algorithm, to
have more accurate, experimentally, based deter-
minations of these parameters. Table 3 provides a
list of the parameters we used for pseudoknot-
related conformations.

Results

The main purpose of this work is to present an
algorithm that solves optimal pseudoknotted RNA
structures by dynamic programming. RNA struc-
ture prediction of single sequences with the nested
algorithm already involves some approximation
and inaccuracy (Zuker, 1995; Huynen et al., 1997).
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Table 3. The new thermodynamic parameters specific for pseudoknot
configurations which we had to estimate

Symbol Scoring parameter for Value (kcal/mol)
EIS? IS? in a gap matrix EIS* x g(0.83)
c Coaxial stacking in pseudoknots Cxg

P Pair in a pseudoknot 01

Py Pair in a non-nested multiloop Pxg

Q Non-paired base in pseudoknot 0.2 _
R L Base dangling off a pseudoknot pair dangle x g+ Q
M Non-nested multiloop 8.43

G, Generating a new pseudoknot 7.0

G, Generating a pseudoknot in a multiloop 13.0

G Overlapping pseudoknots 6.0

We expect this inaccuracy to increase in our case,
since the algorithm now allows a much larger con-
figuration space. Therefore, our limited objective
here is to show that on a few small RNAs that are
thought to conserve pseudoknots, our program (a
minimal-energy implementation of the pseudoknot
algorithm using a thermodynamic model) will
actually find the pseudoknots; and for a few small
RNAs that do not conserve pseudoknots, our pro-
gram finds results similar to MFOLD, and does not
introduce spurious pseudoknots.

tRNAs

Almost all transfer RNAs share a common clo-
verleaf structure. We have tested the algorithm
on a group of 25 tRNAs selected at random from
the Sprinzl tRNA database (Steinberg et al., 1993).
The program finds no spurious pseudoknot for
any of the tested sequences. All but one (DT5090)
of the tRNAs fold into a cloverleaf configuration.
Of the 24 cloverleaf foldings, 15 are completely
consistent with their proposed structures (that is,
each helical region has at least three base-pairs in
common with its proposed folding). The remain-
ing nine cloverleaf foldings misplace one (six
sequences) or two (three sequences) of the helical
regions. On the other hand, MFOLD’s lowest
energy prediction for the same set of tRNA
sequences includes only 19 cloverleaf foldings, of
which 14 are completely consistent with their
proposed structures. Performance for our pro-
gram is, therefore, at least comparable with
MFOLD; the inaccuracies found are the result of
the approximations in the thermodynamic model,
not a problem with the pseudoknot algorithm
per se. The relevant result in relation to the pseu-
doknot algorithm is that its implementation pre-
dicts no spurious pseudoknots for tRNAs.

One should not think of this result as a trivial
one, because when knots are allowed, the configur-
ation space available becomes much larger than
the observed class of conformations. This problem
is particularly relevant for “maximum-pairing-
like” algorithms, such as the MWM algorithm pre-
sented by Cary & Stormo (1995) or a Nussinov
implementation of our pseudoknot algorithm

(Figure 5). In both cases, the result is almost uni-
versal pairing because there is enough freedom to
be able to coordinate any position with another
one in the sequence.

Another important aspect of tRNA folding is
coaxial energies. Most tRNAs gain stability by
stacking coaxially two of the hairpin loops, and the
third one with the acceptor stem. This aspect of
tRNA folding is very important and in some cases
crucial to determine the right structure. There are
situations like tRNA DA0260 in which MFOLD
does not assign the lowest energy to the correct
structure (the MFOLD 3.0 prediction for DA0260
misses the acceptor stem, and has a free energy of
—22.0 kcal/mol). Our algorithm, on the other
hand, implements coaxial energies; as a result, the
cloverleaf configuration becomes the most stable
folding for tRNA DA0260 (AG = —24.3 kcal/mol).
The implementation of coaxial energies explains
why we found more cloverleaf structures for
tRNAs than MFOLD does.

HIV-1-RT-ligand RNA pseudoknots

High-affinity ligands of the reverse transcriptase
of HIV-1 isolated by a SELEX procedure by Tuerk
et al. (1992) seem to have a pseudoknot consensus
secondary structure. These oligonucleotides have
between 34 and 47 bases, and fold into a simple
pseudoknot. Of a total of 63 SELEX-selected pseu-
doknotted sequences available from Tuerk et al.
(1992), we found 54 foldings that agreed exactly
with the structures derived by comparative anal-
ysis (AG = —9 kcal/mol for sequence pattern I (3-
2)). As expected, MFOLD predicts only one of the
two stems (AG = —7.5 kcal/mol for the same
sequence).

Viral RNAs

Some virus RNA genomes (such as turnip
yellow mosaic virus, TYMV; Guiley et al., 1979)
present a tRNA-like structure at their 3'-end that
includes a pseudoknot in the aminoacyl acceptor
arm very close to the 3-end (Kolk et al., 1998; Pleijj
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et al., 1985; Dumas et al., 1987). Our program cor-
rectly predicts the TYMV tRNA-like structure with
its pseudoknot for the last 86 bases at the 3'-end
with AG = —30.4 kcal/mol (the MFOLD 3.0 pre-
diction for TYMV has a free energy of
AG = —28.9 kcal/mol). The tRNA-like 3’ terminal
structure is conserved among tymoviruses, and
also for the tobacco mosaic virus cowpea strain,
another valine acceptor. Of the seven valine-accep-
tor tRNA-like structures proposed to date (Van
Belkum et al., 1987), we reproduce six of them,
except for kennedya yellow mosaic virus.

Another interesting pseudoknot appears in the
last 189 bases of the 3’ terminus of the tobacco
mosaic virus (TMV; Van Belkum et al., 1985). TMV
also has a tRNA-like pseudoknot structure at the
end, but it may have additional upstream pseudo-
knots, up to a total of five, forming a long quasi-
continuous helix. We folded the upstream and
downstream regions separately in a piece of 84
nucleotides (the folding requires 47 minutes and
9.8 Mb) and 105 nucleotides (the folding requires
235 minutes and 22.5 Mb), respectively. Our pro-
gram predicts the 105 nucleotides downstream
region exactly with AG = —32.5 kcal/mol. For the
84 nucleotides upstream region we find four of the
five helical regions with AG = —19.0 kcal/mol.

Finally we have considered the recently crystal-
lized ribozymes of the hepatitis delta virus (HDV;
Ferré-D’Amaré et al., 1998). Our program predicts
correctly the structure of the 91 nt antigenomic
HDV ribozyme (AG = —36.7 kcal/mol). Our pro-
gram also predicts the pseudoknot present in the
87 nt genomic ribozyme (AG = —43.9 kcal/mol; in
this case the prediction misses the short two-stem
hairpin between positions 17-30).

Discussion

Here, we present an algorithm able to predict
pseudoknots by dynamic programming. This
algorithm demonstrates that using certain approxi-
mations consistent with the accepted Turner
thermodynamic model, the prediction of pseudo-
knotted structures is a problem of polynomial com-
plexity (although admittedly high). Having an
optimal dynamic programming algorithm will
enable extending other dynamic programming
based methods that rigorously explore the confor-
mational space for RNA folding (McCaskill, 1990;
Bonhoeffer et al., 1993) to pseudoknotted struc-
tures.

Apart from the usefulness of the algorithm in
predicting pseudoknots, we also include coaxial
energies (when two stems stack coaxially), a very
common feature of RNA folding. We expect
MFOLD will also include coaxial energies in the
near future (Mathews ef al., 1998).

Our algorithm is presented in the context of a
general framework in which a generic folding is
expressed in terms of its elementary secondary
interactions (which we have identified as the irre-

ducible surfaces). This is a further generalization of
the results reported by Sankoff (1985). The calcu-
lation of an optimal folding becomes an expansion
in ISs of increasingly higher order. Our formaliza-
tion incorporates all current dynamic program-
ming RNA folding algorithms in addition to our
pseudoknot algorithm. It also establishes the limi-
tations of each approximation by determining at
which order the expansion is truncated.

As for the thermodynamic implementation pre-
sented here, one of our major problems is the
almost complete lack of thermodynamic infor-
mation about pseudoknot configurations. The ther-
modynamic algorithm is also sensitive to the
accuracy of the existing thermodynamic par-
ameters. We expect to improve this aspect by
implementing the more complete set of parameters
provided by the Turner group (Mathews et al.,
1998).

The principal drawback is the time and memory
constraints imposed by the computational com-
plexity of the algorithm. At this early stage, we
cannot analyze sequences much larger than 130-
140 bases. For now, the program is adequate for
folding small RNAs. A 100 nt RNA takes about
four hours and 22.5 Mb to fold on an SGI R10K
Origin200.

Due to practical limitations, at a given point in
the recursion we only allow the incorporation of
two gap matrices. However, since each of those
gap matrices can in turn be assembled by other
two of those matrices, it implies that the algor-
ithm includes in its configuration space a large
variety of knotted motifs. The limitations of this
truncation appeared when we considered apply-
ing this approach to describe pairwise residue
interactions in protein folding. A parallel B-sheet
configuration in protein structure provides an
example of a complicated knotted folding that
cannot be handled by the pseudoknot algorithm
presented here. However, all known RNA pseu-
doknots can be handled by the algorithm, which
makes the approximation useful enough for RNA
secondary structure.

Although we implemented the algorithm for
energy minimization, extending MFOLD to pseu-
doknotted structures, the algorithm is not limited
to energy minimization. Our algorithm can be con-
verted into a probabilistic model for pseudoknot-
containing RNA folding. Probabilistic models of
RNA second structure based on “stochastic context
free grammar” (SCFG) formalisms (Eddy et al,
1994; Sakakibara et al., 1994; Lefebvre, 1996) have
been introduced both for RNA single-sequence
folding and for RNA structural alignment and
structural similarity searches. The Inside and CYK
dynamic programming algorithms used for SCFG-
based structural alignment are fundamentally simi-
lar to the Zuker algorithm (Durbin et al., 1998), and
have consequently also been unable to deal with
pseudoknots. Heuristic approaches to applying
SCFG-like structural alignment models to pseudo-
knots have been introduced (Brown, 1996;
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Notredame et al.,, 1997), and the maximum
weighted matching algorithm has been applied to
find optimal alignments (Tabaska & Stormo, 1997).
An SCFG-like probabilistic version of our pseudo-
knot algorithm could be designed to obtain opti-
mal structural alignment of pseudoknot-containing
RNAs.

Methods

The algorithm was implemented in ANSI C on a Sili-
con Graphics Origin200. The algorithm has a theoretical
worst-case complexity of O(N®) in time and (¢(N*) in sto-
rage. At its present stage, the program is empirically
observed to run O(N®®) in time and ¢O(N*¥) in memory.
For instance, a tRNA of 75 nt takes 20 minutes and uses
6.6 Mb of memory. The 3’-end of tobacco mosaic virus
has 105 nucleotides and takes 235 minutes and uses
22.5 Mb. The program empirically scales above the
theoretical complexity in time of the algorithm. This
effect seems to have to do with the way the machine
allocates memory for larger RNAs. The software and
parameter sets are available by request from E. Rivas
(elena@genetics.wustl.edu). A technical report giving the
full algorithm is available from http://www.genetics.-
wustl.edu/eddy/publications/.
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Appendix: Recursions for the Gap
Matrices in the Pseudoknot Algorithm

Here we provide simplified recursion relations
for the gap matrices used in the pseudoknot algor-
ithm, without including dangling and coaxial dia-
grams. (As before, contiguous nucleotides are
given explicit dots in the diagrams.)

The recursion for the vhx matrix in the pseudo-
knot algorithm is given by (Figure Al):

vhx(i, j: k,I) = optimal
EIS%(G,j: k. 1)
EVISZ(i,j:r, s) + vhx(r,s:k, 1)
EVISZ(r, s:k, 1)+ vhx(i,j:r,s)
2% P+ M+whx(i+1,j—1:k—1,1+1)

(1A)

Vi, r.k,Ls,j i<r<k<I<s<j]

Here P is the score for creating a pair in a pseudo-
knot, and Ms; corresponds to_the score given to a
non-nested multiloop. P and M could be equal to P
and M, the score for a pair in a nested structure
and the score assigned to nested multiloops
respectively, but it does not have to be. Similarly,
the score for an irreducible surface of ((2), EIS4,
could be the same as the score given for nested
structures, EIS?, but again, it does not have to be.
We found the best fits by giving them values
different from those used for nested foldings (cf.
Tables 2 and 3).

t k1
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Figure A1l. Recursion for the vhx matrix.
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Figure A2. Recursion for the zhx matrix.
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Figure A3. Recursion for the yhx matrix.
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The recursions for the gap matrices zhx and yhx in the pseudoknot algorithm are complementary and

given by (cf. Figures A2 and A3):

zhz(i,j : k,1) = optimal ¢

yhz(i,j : k,[) = optimal ¢

P+ vha(i,j : k,1)

Q + zhx(i,j : k—1,1)

Q + zhz(i,j k1 +1)
zhe(i,j:r0) +wzr(r +1,k)
zhz(i,j: k,s) +wzr(l,s—1)
E/féz(i,j 11, 8) + zha(r,s : k,1)

P4+ M+wha(i+1,5~1:k1)

P+ vhz(i,j : k,1)

Q+yhz(i+1,5: k1)
Q +yhz(i,5 —1: k,1)

wzr(t,r) + yhz(r+ 1,5 : k1)
yha(i, s k1) +wezr(s +1,7)
yhz(i,j:7,8) + lﬁ—é2(r,s k1)
P+ M+wha(i,j k—1,1+1)

Vi,r,k,l,5,5 i<r<k<I1<s<j]

paired

single-
stranded

nested
bifurcations

paired

single-
stranded

nested
bifurcations

Finally, the recursion for the gap matrix whx appears in Figure A4, and is given by:

(A2)

(A3)
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whz (4,7 : k,1) = optimal ¢

Vi,r, 7', k, 1,8,

2% P + vhz(,j : k,1)
P+ zhz(i,j: k,1)
P +yhz(i,j: k,1)

Q +wha(i+ 1,5 : k1)
Q + whz(i,j —1: k,1)
Q + wha(i,j k —1,1)
Q +whz(i,j: k,[+1)

wzy (i, k) + wz(l, j)

wzr(i,r) + whz(r + 1,5 : k,1)
whz(i,j : 1) +wrr(r +1,k)
whz(i,s : k1) +wzr(s+1,7)
whz(i,j : k,s+ 1) + wzr(l, s)
yhx(i,j: 7, 8) + zhz(r,s : k,1)

M + wha(i,j : 7, 8) + wha(r +1,s — 1 : k,1)

Gun +whz(i,s: 1,l) + whz(r + 1,7 : k,s+ 1)
Gun +whz(i,s' : k,s) + whz(l,j:s - 1,8 +1)
Gun +wha(r,j v, 1) + whe(i, k:r— 1,7 + 1)

j o i<r<r <k<I<s<s <]

paired

single-
stranded

nested
bifurcations

non-nested
bifurcations

Figure A4. Recursion for the whx

(Ad)
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Here G, stands for the score given for finding
overlapping pseudoknots, that is pseudoknots that
appear within already existing pseudoknots.

The initialization conditions are:

whx(i,j:i,]) = +o0

vhx(i,j:k, k) = +o00

yhx(i,j:k, k) = +o0

whx(i, ]k, k) = whx(i,j:k, k+ 1) = wx(i, j)
zhx(i, j:k, k) = zhx(i, j: k, k + 1) = vx(i, j)

(A5)

Vi,k,j 1<i<k<j<N]

Edited by I. Tinoco

(Received 27 July 1998; received in revised form 20
November 1998; accepted 22 November 1998)

MB

Onmnlinmne

http://www.academicpress.com/jmb

Supplementary material comprising 1 pdf file is
available from JMB Online


http://www.academicpress.com/jmb

	A Dynamic Programming Algorithm for RNA Structure Prediction Including Pseudoknots
	Introduction
	Figure 1

	Algorithm
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Table 1
	Table 2
	Preliminaries
	Diagrammatic representation of nested algorithms
	Description of the pseudoknot algorithm
	Coaxial stacking and dangles
	Minimum-energy implementation: thermodynamic parameters

	Results
	Table 3
	tRNAs
	HIV-1-RT-ligand RNA pseudoknots
	Viral RNAs

	Discussion
	Methods
	Acknowledgments
	References
	Appendix: Recursions for the Gap Matrices in the Pseudoknot Algorithm
	Figure A1
	Figure A2
	Figure A3
	Figure A4



