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comprehensive analyses. Further, it means that 
results can be reproduced using the original 
computation’s set of tools and parameters. If 
we had run the original TCGA best-practices 
RNA-seq pipeline with one sample per node, 
it would have cost ~$800,000. Through the 
use of efficient algorithms (STAR and Kallisto) 
and Toil, we were able to reduce the final cost 
to $26,071 (Supplementary Note 9).

We have demonstrated the utility of Toil by 
creating one of the single largest, consistently 
analyzed, public human RNA-seq expression 
repositories, which we hope the community 
will find useful.

Editor’s note: This article has been peer-reviewed.

Note: Any Supplementary Information and Source Data 
files are available in the online version of the paper.
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To the Editor:
The increasing complexity of readouts for 
omics analyses goes hand-in-hand with 
concerns about the reproducibility of 
experiments that analyze ‘big data’1–3. When 
analyzing very large data sets, the main source 
of computational irreproducibility arises from 
a lack of good practice pertaining to software 
and database usage4–6. Small variations across 
computational platforms also contribute to 
computational irreproducibility by producing 
numerical instability7, which is especially 
relevant to high-performance computational 
(HPC) environments that are routinely used 
for omics analyses8. We present a solution to 
this instability named Nextflow, a workflow 
management system that uses Docker 
technology for the multi-scale handling of 
containerized computation.

In silico workflow management systems 
are an integral part of large-scale biological 
analyses. These systems enable the rapid 
prototyping and deployment of pipelines that 
combine complementary software packages. 
In genomics the simplest pipelines, such as 
Kallisto and Sleuth9, combine an RNA-seq 
quantification method with a differential 
expression module (Supplementary Fig. 1). 
Complexity rapidly increases when all aspects 
of a given analysis are included. For example, 

the Sanger Companion pipeline10 bundles 
39 independent software tools and libraries 
into a genome annotation suite. Handling 
such a large number of software packages, 
some of which may be incompatible, is a 
challenge. The conflicting requirements of 
frequent software updates and maintaining 
the reproducibility of original results provide 
another unwelcome wrinkle. Together with 
these problems, high-throughput usage of 
complex pipelines can also be burdened by the 
hundreds of intermediate files often produced 
by individual tools. Hardware fluctuations in 
these types of pipelines, combined with poor 
error handling, could result in considerable 
readout instability.

Nextflow (http://nextflow.io; 
Supplementary Methods, Supplementary 
Note and Supplementary Code 1) is 
designed to address numerical instability, 
efficient parallel execution, error tolerance, 
execution provenance and traceability. It is a 
domain-specific language that enables rapid 
pipeline development through the adaptation 
of existing pipelines written in any scripting 
language.

We present a qualitative comparison 
between Nextflow and other similar tools in 
Table 1 (ref. 11). We found that multi-scale 
containerization, which makes it possible to 

Nextflow enables reproducible 
computational workflows
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user interface (GUI) in Galaxy offers powerful 
support for de novo pipeline implementation 
by non-specialists, it also imposes a heavy 
development burden because any existing 
and validated third-party pipeline must be 
re-implemented and re-parameterized using 
the GUI. This can be very demanding in 
the case of elaborate pipelines, such as the 
Sanger Companion pipeline, which is made 
with a complex combination of tools. Similar 
reimplementation requirements also apply to 
other tools, including Toil20.

To illustrate how Nextflow can be used, 
we first determined the size of the numerical 
stability problem for a sample complex 
pipeline, in this case the Sanger Companion 
pipeline10. We used it to carry out a gene 
annotation prediction for the Leishmania 

computational flexibility and robustness in 
Nextflow. For example, in Snakemake, the 
task execution sequence is defined by rules 
and patterns that depend on input/output file 
names. These dependencies make it difficult to 
handle multiple dynamically generated output 
files, and often require the implementation 
of low-level output management procedures 
to deal with a pipeline’s individual stages. 
Nextflow can use any data structure and 
outputs are not limited to files but can also 
include in-memory values and data objects.

Nextflow is designed specifically 
for bioinformaticians familiar with 
programming. This sets it apart from 
Galaxy18, which addresses the numerical 
stability issue with a custom package manager 
called Tool Shed19. Although the graphical 

bundle entire pipelines, subcomponents and 
individual tools into their own containers, is 
essential for numerical stability. Containers 
can be produced ad hoc by users or by 
following recently proposed standards 
(BioBoxes12, Bioshadock13 and AlgoRun14). 
Another key specification of Nextflow is 
its integration with software repositories 
(including GitHub and BitBucket) and its 
native support for cloud systems. Some of the 
practical implications of this integration are 
relevant to computational reproducibility; 
the impact of GitHub has been recently 
highlighted as a driving force behind data 
sharing15.

Nextflow enables users to run any current 
or previous version of a pipeline for any 
published and properly deposited analyses. 
The GitHub integration allows consistent 
tracking of software changes and versions, 
the containerization ensures numerical 
stability, and the cloud support provides rapid 
computation and effective scaling. When 
using this process, any set of results, including 
a table, a graph or any kind of numerical 
quantification can be associated with a single 
command line and referenced, updated, 
reproduced or improved on demand. Nextflow 
uses a functional reactive programming model 
in which each operation (typically a workflow 
task) is isolated in its own execution context. 
Outputs from one operation in Nextflow are 
streamed to other operations by dedicated 
channels in a process similar to UNIX pipes. 
Parallelization is an implicit consequence of 
the way inputs and outputs of each process are 
channeled into other processes. This approach 
spares users the need to implement an explicit 
parallelization strategy. Another advantage 
of Nextflow is its reliance on the dataflow 
programming paradigm, in which tasks are 
automatically started once data are received 
through input channels.

The dataflow model is superior to 
alternative solutions based on a Make-like 
approach, such as Snakemake16, in which 
computation involves the pre-estimation 
of all computational dependencies, starting 
from the expected results up until the input 
raw data (Table 1). A Make-like procedure 
requires a directed acyclic graph (DAG), 
whose storage requirement is a limiting factor 
for very large computations. In contrast, as 
the top to bottom processing model used 
by Nextflow follows the natural flow of data 
analysis, it does not require a DAG. Instead, 
the graph it traverses is merely incidental and 
does not need to be pre-computed or even 
stored, thereby ensuring high scalability17.

The use of communication channels 
between tasks also contributes to 

Table 1  Comparison of Nextflow with other workflow management systems
Workflow Nextflow Galaxy Toil Snakemake Bpipe

Platforma Groovy/JVM Python Python Python Groovy/JVM

Native task supportb Yes (any) No No Yes (BASH only) Yes (BASH only)

Common workflow languagec No Yes Yes No No

Streaming processingd Yes No No No No

Dynamic branch evaluation Yes ? Yes Yes Undocumented

Code sharing integratione Yes No No No No

Workflow modulesf No Yes Yes Yes Yes

Workflow versioningg Yes Yes No No No

Automatic error failoverh Yes No Yes No No

Graphical user interfacei No Yes No No No

DAG renderingj Yes Yes Yes Yes Yes

Container management

Docker supportk Yes Yes Yes No No

Singularity supportl Yes No No No No

Multi-scale containersm Yes Yes Yes No No

Built-in batch schedulersn

Univa Grid Engine Yes Yes Yes Partial Yes

PBS/Torque Yes Yes No Partial Yes

LSF Yes Yes No Partial Yes

SLURM Yes Yes Yes Partial No

HTCondor Yes Yes No Partial No

Built-in distributed clustero

Apache Ignite Yes No No No No

Apache Spark No No Yes No No

Kubernetes Yes No No No No

Apache Mesos No No Yes No No

Built-in cloudp

AWS (Amazon Web Services) Yes Yes Yes No No

Among the several workflow management tools similar to Nextflow, Bpipe11 is probably the most closely related to Nextflow. 
However, one problem with Bpipe is a lack of support for multi-scale containerization, which is present in Nextflow and other 
workflow managers such as Galaxy and Toil. aThe technology and the programming language in which each framework is 
implemented. bThe ability of the framework to support the execution of native commands and scripts without re-implemen-
tation of the original processes. cSupport for the CWL specification. dAbility to process tasks inputs/outputs as a stream of 
data. eSupport for code management and sharing platforms, such as GitHub, BitBucket and GitLab. fSupport for module, 
sub-workflows or workflow compositions. gAbility to track pipeline changes and to execute different versions at any point in 
time. hSupport for automatic error handling and resume execution mechanism. iImplementation of a graphical user interface 
to interact to with the pipeline. jAbility to visualize the graph of the task dependencies and executions. kIntegrated support for 
Docker containers technology. lIntegrated support for Singularity containers technology. mAbility to manage the execution of 
multiple container instances in a distributed/HPC cluster or cloud. nAbility to spawn the executions of pipeline tasks through 
a cluster batch scheduler without the need of custom scripts or commands. It must be noted that although this support is not 
built-in for Snakemake, it merely requires the user to provide the cluster-specific job control commands. oAbility to spawn the 
executions of pipeline tasks through a distributed cluster. pAbility to deploy and run distributed workflows taking advantage 
of distinctive cloud infrastructure features such as elastic resource allocations and spot-instances. Boldface indicates list of 
similar supported components or applications.
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infantum genome (Supplementary 
Methods). Our results indicated variations 
across different UNIX platforms (Fig. 1a,b 
and Supplementary Table 1). This instability 
contrasts with the deterministic behavior 
measured on each individual platform. As 
the Companion pipeline was implemented 
in Nextflow we were able to confirm readout 
stability when using a dockerized version of 
the same pipeline across the three UNIX-like 
operating systems (Fig. 1a).

Gene annotation is not the only type of 
genomic analysis affected. We identified 
similar problems when using Kallisto (an 
expression quantification tool) combined with 
the Sleuth differential expression package9. 
In this case, variations in the identification of 
differentially expressed genes were observed 
when running the pipeline on two different 
systems (Fig. 1c, left panel). However, no 
such differences were observed when running 
a Nextflow dockerized version of the same 
pipeline on those systems (Fig. 1c, right 
panel, and Supplementary Fig. 2). Finally, a 
platform-dependent effect was also observed 
when estimating maximum likelihood trees 
with RaxML21 (Supplementary Fig. 3). 
Nextflow was able to control effectively 
for these variations when using a Docker-

enabled Nextflow version of the same 
pipeline (Supplementary Fig. 3). All three 
computational experiments are available on 
GitHub (pipelines; https://github.com/cbcrg/
kallisto-nf-reproduce/tree/nbt-v1.0, https://
github.com/cbcrg/raxml-nf/tree/nbt-v1.0, 
https://github.com/cbcrg/companion) and 
Zenodo (data and results; https://zenodo.org/
record/159153#.WMgK52_yvcs).

Nextflow is a solution to the numerical 
instability issue that occurs when data-
analytic pipelines are used on different 
computational platforms. Numerical 
instability affects most types of in silico 
analyses, and although the overall impact 
of numerical stability on final readouts may 
seem modest, the lack of effective solutions to 
date has left users with a daunting challenge 
when it comes to choosing which platform 
to use. Careful monitoring of database and 
software versions is simply not enough. 
A lack of numerical stability can have 
problematic consequences when processing 
experimental data, such as compromising 
verification and updating of previous results. 
For example, in a personalized medicine 
application, numerical instability might result 
in treatment variations with unforeseen 
consequences.

Numerical stability is likely to be a long-
standing problem22. We report here that the 
use of Nextflow confers numerical stability of 
computational workflows across commonly 
used clusters of computers and clouds.

Editor’s note: This article has been peer-reviewed.

Note: Any Supplementary Information and Source Data 
files are available in the online version of the paper.
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Figure 1  Nextflow enables stable analyses on different platforms. (a) Leishmania infantum clone 
JPCM5 genome annotation was carried out using either a native or a dockerized (Debian Linux) version 
of the Companion eukaryotic annotation pipeline. The native and dockerized versions were run on both 
Mac OSX and Amazon Linux platforms. The Venn diagram, plotted using the annotated genes, reveals 
small discrepancies when comparing the genomic coordinates of predicted coding genes, non-coding 
RNAs, and pseudogenes. (b) Some disparities included the annotation of the same genes at different 
genomic coordinates. Completely identical annotations were obtained when using the dockerized 
version on either the Mac OSX or Amazon Linux platforms. (c) Comparison of the Kallisto and Sleuth 
pipelines, applied to find differentially expressed genes (q-value < 0.01) in an RNA-seq experiment, 
using data from human lung fibroblasts, revealed differences when carried out on either the Mac OSX or 
the Amazon Linux platform. Both platforms produced identical readouts when deploying the dockerized 
version of the pipeline. All analyses were carried out at least twice and checked for numerical stability.
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Reproducible RNA-seq analysis 
using recount2

comparable gene counts to one of the largest 
published studies.

The advantage of using the recount2 version 
of GTEx data is that all data are identically 
processed, therefore enabling integrated 
analyses of multiple datasets. To illustrate how 
recount2 can be used to investigate or validate 
cross-tissue differences using publicly available 
data, we computed expression differences 
comparing samples from healthy colon tissue 
and whole blood from healthy individuals 
(Supplementary Methods, Supplementary 
Note 2, Section 1.8 and Supplementary 

Figure 1  Meta-analysis and study comparison 
facilitated by recount2. (a) The distribution of 
correlations between gene expression estimates 
for GTEx v6 from the GTEx portal and the counts 
calculated in recount2 for protein coding genes. 
The gene expression counts are highly correlated 
between both quantifications for almost all 
genes. (b) A comparison of the fold changes for 
differential expression between colon and whole 
blood using the quantifications from GTEx and 
from recount2 for protein coding genes. The 
majority of genes have a similar fold-change 
between the two analyses. (c) A concordance 
versus rank (i.e., ‘concordance at the top’, CAT) 
plot showing comparisons between a meta-
analysis tissue comparison of whole blood and 
colorectal tissue in data from the sequence read 
archive and the GTEx project. When comparing 
the same tissues, there is a strong concordance 
between differential expression results on public 
data and GTEx (orange), less concordance when 
different tissues are compared (blue) and almost 
none when comparing different analyses (pink).

To the Editor: 
RNA sequencing (RNA-seq) is used to 
measure gene expression levels across the 
transcriptome for a huge variety of samples. 
For example, RNA-seq has been applied to 
study gene expression in individuals with rare 
diseases1, in hard-to-obtain tissues2 or for rare 
forms of cancer3. Recently, enormous RNA-
seq datasets have been produced in the GTEx 
(Genotype-Tissue Expression) study4, which 
comprises 9,662 samples from 551 individuals 
and 54 body sites, and in the Cancer Genome 
Atlas (TCGA) study, which comprises 
11,350 samples from 10,340 individuals and 
33 cancer types. Public data repositories, 
such as the Sequence Read Archive (SRA), 
host >50,000 human RNA-seq samples. It is 
estimated that these repositories are likely to 
double in size every 18 months5. Deposited 
data are provided as raw sequencing reads, 
which are costly for standard academic labs 
researchers to analyze. Efforts have been made 
to standardize and publish ready-to-analyze 
summaries of both DNA sequencing6 and 
exome-sequencing7 data. Adopting a similar 
approach for archived RNA-seq data, we have 
developed recount2, which comprises >4.4 
trillion uniformly processed and quantified 
RNA-seq reads.

Many researchers rely on processed forms 
of publicly available data, such as gene counts, 
for statistical methods development and 
re-analysis of candidate genes. Although 
these quantified data are sometimes available 
through the Gene Expression Omnibus8, 
there are no requirements to deposit these 
data, nor are data always processed with 
standard or complete pipelines9–13. Five years 
ago, we began to address this problem by 
summarizing RNA-seq data into concise gene 
count tables and making these processed data 
and metadata available as Bioconductor14 
ExpressionSet objects with one documented 
processing pipeline. Together this formed an 
RNA-seq resource named ReCount15 that 
contained 8 billion reads from 18 studies. 
ReCount was used in the development 
of the DESeq2 (ref. 16), voom17 and 
metagenomeSeq18 methods for differential 

expression and normalization, compilation 
of co-expression networks19 and to study 
the effect of ribosomal DNA dosage on gene 
expression20. The amount of archived RNA-
seq data has massively increased over the past 
five years. To meet the needs of researchers, we 
have produced recount2, which contains >4.4 
trillion uniformly processed and quantified 
RNA-seq reads that are derived from in excess 
of 70,603 human RNA-seq samples deposited 
in the SRA, GTEx and TCGA projects aligned 
with Rail-RNA21,22.

The recount2 resource summarizes 
expression data for genes, exons, exon–exon 
splice junctions and base-level coverage 
(Supplementary Methods), which enables 
multiple downstream analyses, including 
testing for differential expression of potentially 
unannotated transcribed sequence23. A 
searchable interface is available at this site 
(https://jhubiostatistics.shinyapps.io/recount/) 
and via the accompanying Bioconductor 
package (http://bioconductor.org/packages/
recount). 

We first compared recount2-processed 
data with the publicly available data from the 
GTEx project, which comprises 9,662 samples 
from >250 individuals24 to demonstrate 
that our processing pipeline produced gene 
counts similar to the published counts 
(Supplementary Methods). We downloaded 
the official release of the gene counts from 
the GTEx portal and compared them with 
the recount2 gene counts (Supplementary 
Note 1, Section 4). For protein coding genes, 
the gene expression levels that we estimated 
using the recount2 pipeline had a median 
(IQR) correlation of 0.987 (0.971, 0.993) 
with the v6 release from GTEx (Fig. 1a 
and Supplementary Note 1, Section 4). A 
differential expression analysis comparing 
colon and whole blood samples using the 
gene expression measurements from recount2 
matched the results obtained using the v6 
release from the GTEx portal (r2 = 0.92 
between fold changes for recount2 and GTEx 
v6 counts for protein coding genes; Fig. 1b 
and Supplementary Note 1, Section 5). These 
results suggest that recount2 produces directly 
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