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Abstract

This review provides an overview on the development of Multiple sequence alignment (MSA) methods and their main appli-
cations. It is focused on progress made over the past decade. The three first sections review recent algorithmic develop-
ments for protein, RNA/DNA and genomic alignments. The fourth section deals with benchmarks and explores the relation-
ship between empirical and simulated data, along with the impact on method developments. The last part of the review
gives an overview on available MSA local reliability estimators and their dependence on various algorithmic properties of
available methods.
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Introduction

Multiple sequence alignment (MSA) methods refer to a series of
algorithmic solution for the alignment of evolutionarily related
sequences, while taking into account evolutionary events such
as mutations, insertions, deletions and rearrangements under
certain conditions. These methods can be applied to DNA, RNA
or protein sequences. A recent study in Nature [1] reveals MSA
to be one of the most widely used modeling methods in biology,
with the publication describing ClustalW [2] pointing at #10
among the most cited scientific papers of all time. Indeed, a
large number of in silico analyses depend on MSA methods.
These include domain analysis, phylogenetic reconstruction,

motif finding and a whole range of other applications, exten-
sively described in [3–4].

MSA is indeed an important modeling tool whose develop-
ment has required addressing a complex combination of com-
putational and biological problems. The computation of an
accurate MSA has long been known to be an NP-complete prob-
lem, a situation that explains why over 100 alternative methods
have been developed these past three decades [4]. Original MSA
methods (MSAMs) and their applications have been extensively
covered by several reviews [3–5]. To avoid redundancy, we will
focus here on the main developments that have taken place
over these past 10 years and put them in a broader historical
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context when needed. The three first sections will detail the
general algorithmic framework of MSAMs and show how it re-
lates to the newest methods and their application to all sorts of
biological sequences (proteins, RNA, DNA). The fourth part will
cover method validation and available benchmarks, with a spe-
cial emphasis on the newest generation designed to cater for
evolutionary and structural modeling. The last part of this re-
view will deal with the quantification of local reliability within
MSAs. This task had long been identified as instrumental, and
possibly more important than the computation of the models—
necessarily approximate. It is, however, only recently that sys-
tematic approaches have been developed with the explicit aim
of quantifying local reliability, thus allowing a systematic filter-
ing and weighting for downstream modeling. We will review
these methods in the light of the latest reports.

Algorithmic frameworks for MSA computation

Despite their wide diversity, MSAMs all share a major key prop-
erty: their reliance on approximate and usually greedy heuris-
tics, imposed by the NP-complete nature of the problem. These
heuristics all depend, more or less explicitly, on specific data
properties, such as size, nature of the homology, relatedness,
length and so on. As a consequence, any change—even minor—
on the kind of data being modeled requires the development of
novel heuristic strategies. Such changes have recently included
the need of upscaling under the high-throughput sequencing
pressure and the need for more complex sequence descriptors,
including non-coding RNA or non-transcribed genomic se-
quences. Shifting modeling needs can also drive the develop-
ments of novel heuristics, a fact well illustrated by the recent
development of phylogeny-aware aligners. Another driving
force behind the development of new heuristics has been the
increasing availability of structural data that has fueled the de-
velopment of hybrid methods able to simultaneously deal with
sequences and secondary (RNA) or tertiary (RNA and proteins)
structures. Likewise, the explosion of available genomic data
has put a lot of pressure on the development of a new gener-
ation of non-coding/non-transcribed DNA aligners.

Commonly used algorithms

Given a set of biological sequences (RNA, proteins, DNA), the
purpose of a MSA method is to align the sequences in a way
that will either reflect their evolutionary, functional or struc-
tural relationship (Figure 1). This purpose is achieved by insert-
ing gaps of varying length within the sequences, allowing
homologous positions to be aligned with each other—just like
one would align beads of identical color in an abacus. In an evo-
lutionary context, these gaps represent insertions and deletions
(indels) within the genome that are hypothesized to have
occurred during the evolution from a common ancestor. In a
correct MSA, aligned residues should be maximally similar ac-
cording to some specified criteria. For instance, if the alignment
is meant for evolutionary reconstruction, the residues should
be homologous, that is to say, correspond to the same residue
in the last unique common ancestor of the considered se-
quences. If the alignment is meant to be a structural model,
aligned residues should have comparable positions in their re-
spective 2D or 3D structures. If the alignment is functional, as
may happen when analyzing genomic data, aligned positions
are expected to support similar functions. Even though it is rea-
sonable to expect a significant overlap between these criteria, it
must be stressed that the complexity of evolutionary forces is

such that their full agreement cannot be taken for granted. For
instance, two structures may be similar as a consequence of
convergent evolution but non-homologous from an evolution-
ary point of view.

To build an MSA, one needs a scoring function (objective
function) able to quantify the relative merits of any alternative
alignment with respect to the modeled relationship. The MSA
can then be estimated by computing an optimally scoring
model. The objective function is a critical parameter, as it pre-
cisely defines the modeling accuracy of an MSA and its predict-
ive capacity. When it comes to evolutionary reconstructions,
the most commonly used objective functions involve maximiz-
ing weighted similarities (as provided by a PAM or BLOSUM sub-
stitution matrix) while using an affine gap penalty to estimate
indels costs. The substitution cost can be adjusted using tree-
based weighting schemes that reflect the independent informa-
tion contribution of each sequence, and the score of columns is
estimated by considering the total all-against-all (sums-of-
pairs) substitution cost. It is well known that the sum-of-pairs
functions are unlikely to be modeling biological relationships
accurately enough [6], but they have been shown to provide a
reasonable trade-off between structural correctness and com-
putability, that is to say, the possibility to rapidly estimate a rea-
sonable MSA.

Under their most common formulations, the optimization of
sums-of-pairs evaluation schemes is NP-complete. One there-
fore needs to rely on heuristics, the most common one being
the progressive alignment algorithm initially described by
Hogeweg and Hesper [7]. This algorithm involves incorporating
the input sequences one by one into the final model, following
an inclusion order defined by a pre-computed guide tree. At
each node, a pairwise alignment is carried out between either a
pair of sequences, a sequence and a profile or two profiles. The
pairwise alignments taking place at each node are estimated
using more or less sophisticated adaptations of the Needlman
and Wunsch global dynamic programming alignment algorithm
[8]. The combination between a tree-based progressive strategy
and a global pairwise alignment algorithm forms the backbone
of most available methods (Figure 1), including ClustalW [2],
T-Coffee [9] and ProbCons [10]. It is also particularly well
adapted for the design of iterative strategies (Figure 1), involving
reestimating trees and alignments until both converge [11],
as implemented in MUSCLE [12], MAFFT [13] and Clustal
Omega [14].

Aside from the objective function, the main algorithmic
component of the progressive alignment is the guide tree esti-
mation procedure. This tree, that decides in which order the se-
quences will be incorporated, can be obtained using a wide
variety of methods, the most standard being Neighbor Joining
(NJ) [15] and Unweighted Pair Group Method with Arithmetic
Mean (UPGMA) [16]. The interaction between the objective func-
tion (substitution scheme and gap penalties), the weighting
scheme and the tree is complex and was extensively explored
by Wheeler [17] who showed how the proper tuning of these
various components can take a standard method up to the level
of the most accurate ones. It is therefore unsurprising to ob-
serve that the latest algorithmic developments have been
focused on guide trees and objective function improvements.

The main caveat of the progressive alignment approach is
the existence of local minima (high level of similarity between a
subset of sequences resulting from an artifact). For instance, if
the guide tree induces the alignment of two distantly related se-
quences, it often happens that the optimal alignment of these
two sequences will not correspond to the pairwise projection
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one would get from the optimal MSA of the entire data set (i.e.
within the MSA the alignment of the two sequences will be
slightly suboptimal so as to allow global optimality at the MSA
level). This situation is common when dealing with low-identity
or low-complexity sequences. When this occurs, the early com-
putation of the first pairwise alignment may prevent the com-
putation of a globally optimal MSA.

The most common strategy to avoid local minima during a
progressive alignment is the use of consistency, as originally
described by [9]. The rationale of consistency is relatively
straightforward: given a set of sequences and their associated
pairwise alignments, treated as constraints, scores for matching
pairs of residues are reestimated so as to deliver pairwise align-
ments more likely to be compatible with a globally optimal
MSA. The first strategy involving such a reestimation of match
costs was reported by Morgenstern as overlapping weights [18].
This scheme later inspired the T-Coffee scoring scheme that
has become the archetypical progressive consistency-based
aligner [9]. Optimizing an alignment against a set of predefined
constraint is known as the Maximum Weight Trace problem. It

is NP-complete under its most common formulations and can
only be solved for small instances [19, 20]. The T-Coffee algo-
rithm is a heuristic approach that involves reestimating the ini-
tial costs of every potential pairwise match by taking into
account its compatibility with the rest of the pairwise align-
ment. The resulting scoring scheme makes it more likely to as-
semble consistent sub-alignments during the progressive MSA
procedure. The main strength of this approach is to allow the
computation of MSAs even when an objective function is only
available to be optimized at the pairwise level. Consistency-
based methods and their relationships have been extensively
reviewed in [4]. Since then, the consistency-based approach has
become one of the most popular algorithmic frameworks for the
development of novel methods (Figure 1).

In a consistency-based algorithm, the most critical param-
eter is the primary library. Given a set of sequences, the primary
library is a collection of all possible pairwise sequence compari-
sons. This library is used to define the consistency-based object-
ive function. In the original T-Coffee [9], the library was a
compilation of all pairs of residues found aligned in the entire

Figure 1. Main algorithmic components of the most widely used multiple aligners. On the heatmap, orange entries indicate a feature implemented in the considered

method. Both the aligners and the components were clustered by similarity using the R-package.

Multiple sequence alignment modeling | 3
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pairwise local and global alignments. These residue pairs were
weighted according to the estimated reliability of their source
alignments. Later on, a variation of the T-Coffee algorithm
named ProbCons [10] established the superiority of pair-
HMM-based libraries. In ProbCons, libraries are compiled using
a pair-HMM to estimate the posterior probability of all possible
pairs of residues (between distinct sequences) to be aligned.
The use of a pair-HMM soon became popular among other
alignment methods (Figure 1). The main novel features of
ProbCons over T-Coffee were the use of a more formal probabil-
istic framework, thanks to the HMM and the implementation of
a biphasic gap penalty when estimating pairwise alignments.
Algorithms relying on a similar combination are often referred
to as probabilistic consistency algorithms; they include the
PECAN multiple genome aligner [21], which uses the Durbin [22]
forward only divide and conquer pairwise alignment and
MSAProbs [23], which relies on a partition function to achieve
more informative posterior probabilities when compiling the li-
brary. Some degree of consistency was also incorporated in the
MAFFT ‘linsi’ algorithm.

When benchmarked on structure-based reference align-
ments, consistency-based aligners have long been shown to
yield the most accurate MSAs [4, 23]. This accuracy comes, how-
ever, at a significant memory and CPU cost, with most imple-
mentations being cubic in CPU and quadratic in memory with
the number of sequences. Three strategies have been proposed
to address this problem. The simplest one involves faster library
computation. For instance, FM-Coffee, the fast implementation
of T-Coffee computes its library using three fast aligners, and
eventually extracts the resulting pairwise projections. The high
correlation between the various projections then makes it pos-
sible to band the consistency extension and significantly lower
time and memory complexity at a near-quadratic level. Even
though the resulting alignments are not as accurate as those ob-
tained using the default procedure, they tend to be more accur-
ate than those produced individually by the combined methods.
The second strategy involves parallelization. Two such schemes
have been recently published Cloud-Coffee [24] and MSAProbs
[23], both which involve parallelizing library computation and
the relaxation step during which pairwise costs are reestimated
when the progressive alignment assembly is taking place. The
last step, which involves splitting computation according to the
tree topology, is highly dependent on the guide tree symmetry,
best performances being achieved with perfectly balanced guide
trees. The third strategy is more sophisticated and involves tun-
ing the library granularity by considering sequence segments
rather than single residues. This implementation, available in
SeqAn [25], is especially well suited to long closely related se-
quences, in which long identical segments can be identified.

Large-scale multiple aligners

Even in their most optimized forms, consistency-based meth-
ods cannot deal with more than a few hundred sequences. This
limit is rather severe in a context where the explosion of gen-
omic sequence availability has resulted in unprecedented large
homologous families that can require aligning up to 1.5 million
members (number of ABC transporters in Pfam) and soon many
more. While the biological relevance of large MSAs can be ques-
tioned, recent analysis indicates that important results can be
established from such large models [26], thus making the accur-
ate and efficient building of large MSAs one of the current grand
challenge of modern biology. Three methods are currently able
to deal with such large data sets: the PartTree mode of MAFFT

[13], Clustal Omega [14] and PASTA [27], the newest version of
SATé [28] (Figure 1). These methods share a common character-
istic: their reliance on a fast pre-clustering step (sub-quadratic
in time) that makes it possible to rapidly determine the order in
which sequences should be aligned.

In the original progressive methods, the guide tree was esti-
mated by comparing all the sequences against one another to
estimate a distance matrix. This comparison can be based on a
slow Needleman and Wunsch [8] alignment or on a fast k-tuple
vector comparison as implemented in MAFFT [13], MUSCLE [29]
and T-Coffee [9]. The fast comparison does not, however, solve
the issue of quadratic time and space requirements for the ma-
trix computation followed by the cubic time complexity of tree
estimation when using either UPGMA or NJ. These requirements
become prohibitive when processing over 10 000 sequences.
Recent clustering methods have been designed to address this
issue. In Clustal Omega [14], the guide tree is estimated using
the mBed method [30]. The principle of mBed is to first estimate
the distance between each sequence and a tiny subset of se-
quences selected on the basis of their length. For each se-
quence, the result is a distance vector that can be used to run a
hierarchical k-means clustering (Figure 1), whose relatively low
complexity (NlogN under the most common heuristic imple-
mentations) allows large data sets of 10 000 sequences or more
to be aligned. PartTree relies on a slightly different procedure
that also involves using a small set of seed sequences to rapidly
pre-cluster the sequences. In both mBed and PartTree, the pre-
cluster step is followed by the computation of sub-trees that are
eventually combined together to form the guide tree. The
PartTree approach was recently improved in the SATé algo-
rithm, which involves an extra iterative tree-refinement step.
The latest attempt at aligning large data sets is an adapted ver-
sion of the T-Coffee algorithm that involves combining k-means
clustering with consistency-based MSAs at a lower level [26].
These approaches scale well, but at the cost of significantly
lower accuracies when aligning >1000 sequences, as shown in
the Clustal Omega benchmark analysis [14]. A probable side
effect of this decreased accuracy has been the report of high
alignment inconsistencies between MAFFT, Clustal Omega and
T-Coffee when dealing with large data sets of relatively similar
orthologous mitochondrial sequences. When considering full
data sets, the authors report average agreement levels as low as
60% [26].

Phylogeny-aware multiple aligners

A major milestone in the development of MSAMs has been the
introduction of structure-based reference alignments that can
be used to compare the relative capacities of various methods
to reconstruct structurally correct alignments from sequence
only. The choice of structure seems rather natural because 3D
features are known to be more evolutionary resilient than the
underlying sequences. On the other hand, this approach relies
on the unproven rationale that structurally and evolutionary
correct alignments are identical. No proof exists that this as-
sumption may be correct, and a simple reasoning suggests it
may not be the case. Indeed, while there can be only one correct
way of matching homologous residues—the one that perfectly
reflects the unique evolutionary history of the considered se-
quences and matches—there can be as many structurally cor-
rect alignments as there are ways to superpose the sequences
with equivalent 3D compactness. Another major potential dis-
crepancy between structural and evolutionary alignments re-
sults from convergent evolution. Whenever such a process has
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shaped some portions of a sequence data set, the resulting
alignment matching convergent regions will be structurally cor-
rect and evolutionary false—and reciprocally.

This issue has recently been addressed by a series of works
aiming at evaluating multiple aligners’ accuracy on the basis of
the quality of the phylogenetic models they support. These
aligners are referred to as phylogeny-aware aligners (Figure 1).
PRANK [31] was one of the first. It relies on the idea that correct
MSAs must have indels patterns properly reflecting the underly-
ing phylogenetic tree. PRANK was rapidly followed by SATé [28],
an iterative multiple aligner derived from MAFFT that attempts
to estimate the MSA supporting the highest-scoring maximum
likelihood tree. An important merit of this approach is to depart
from the long-held assumption that the best MSA is the one
maximizing similarity between sequences. In the context of
phylogeny-aware aligners, the best MSA is defined as the one
yielding the best phylogenetic model [32]. The consequences on
the resulting alignments are rather significant and were par-
ticularly well illustrated in a recent analysis by Blackburne and
Whelan who found that ‘similarity-based’ MSAMs (e.g.
ClustalW, MUSCLE, ProbCons, MAFFT, T-Coffee) and ‘evolution-
based’ MSAMs (e.g. PRANK and BAliPhy) tend to form discrete
clusters under the multidimensional scaling based on their own
similarity measures between pairs of alternative MSAs [33].
These authors found that the selected aligners have a substan-
tial impact on downstream phylogenetic inference and report
the tree topologies and branch length to depend on the aligner
category. Aligners also have a clear impact when quantifying
positive selection, with different readouts associated with vari-
ous aligners as reported on the analysis of several Drosophila
genomes [34]. Morrison suggests that phylogeneticists are usu-
ally dissatisfied with similarity-based alignments and tend to
manually edit their MSAs to produce alignments more likely to
reflect homology from a true evolutionary stand-point [32]. This
observation may also explain why results and method ranking
achieved on evolutionarily simulated data sets significantly dif-
fer from those measured on structure-based empirical data [4].
However, a recent study by Chang [35] shows that the same reli-
ability index can be used to select both the most phylogenetic-
ally informative positions and the positions most likely to
contain structurally analogous residues. It is worth mentioning
that this study gave contrasting results with respect to phyl-
ogeny-aware aligners, and while SATé appears to perform well
both on structure and evolutionary benchmarks, PRANK was
found to return poor structural alignments, while being able to
produce alignments supporting trees with an accuracy compar-
able with the other MSAMs—phylogeny aware and similarity
based.

Structure-based MSAs

Thanks to its high evolutionary resilience, structural informa-
tion can help produce high-quality models, especially in situ-
ations where one aims at modeling structural and functional
relationships. This section briefly reviews some of the methods
able to combine sequence and structural information when
aligning RNA or protein sequences.

Protein sequence/structure multiple alignments using
template-based protein aligners

Structural information has long been known to be more resili-
ent than its underlying sequence counterpart [36]. Yet, it is only
recently that the corpus of available structural information has

made it worthy to develop methods able to combine sequence
and structural information within a single model. While the
first generation of methods used to rely on protein structure
threading and related methods, the newer generation of align-
ers takes advantage of the availability of multiple experimental
structures within an increasing number of protein families. It
has become common practice to combine structural aligners
output (pairwise or multiple) using a consistency-based frame-
work (Figure 1). The principle is fairly straightforward and in-
volves associating each sequence with a template that can be
either a bona-fide structure or a sequence with a known struc-
ture related closely enough to the sequence of interest so that
no ambiguity exists in the template/target sequence alignment.
When no structure is available, sequences are replaced with
profiles from which one can either generate a conservation pro-
file (as done in PSI-Coffee or TM-Coffee [37]) or a secondary
structure prediction using PSIPRED [38], or both as done in
Prommals3D [39], 3D-Coffee [40] and Expresso [41]. The library is
then built by aligning the sequences in pairs, using the pairwise
method best suited for the considered templates. In this way,
alternative methods can be combined seamlessly. This ap-
proach is especially convenient when dealing with pairwise
structural alignment methods lacking a multiple alignment im-
plementation. The possibility of combining several alternative
structural aligners also provides a simple way to address the
difficulty of objectively telling alternative structure-based se-
quence alignment models apart. In this context, the consist-
ency-based approach makes it possible to identify the portion
of a model best supported by all the considered methods. This
approach has been implemented in the Expresso package,
which supports three of the most commonly used structural
aligners and can easily accommodate any other third-party
aligner.

RNA multiple sequence aligners

The low-complexity alphabet of RNA molecules makes their
alignment more challenging than that of protein sequences,
with biologically meaningful alignments difficult to estimate
<60% identity [42]. Whenever secondary structures are evolu-
tionarily conserved, covariation often becomes the strongest
available signal. However, standard aligners, like ClustalW,
MAFFT or T-Coffee, assume site independence and cannot take
this information into account, at least in their default usage. In
fact, for these standard aligners, covariation is more of a con-
founding factor as it decreases sequence identity. More special-
ized aligners are therefore needed, able to simultaneously
recognize similarity at the sequence and secondary-structure
level. These algorithms are all heuristic approximations, more
or less explicitly related to the Sankoff dynamic programming
algorithm [43], which simultaneously folds and aligns RNAs at a
prohibitive computational cost O(N3m), with m being the number
of sequences and N their length. Several banded implementa-
tions of the algorithm have been reported (Figure 1). These en-
force restrictions on the size or shape of substructures; they can
be pairwise aligners such as Consan [44], Dynalign [45, 46],
Stemloc [47] and Foldalign [48, 49] or multiple aligners such as
MXSCARNA [50], a progressive multiple aligner based on
SCARNA [51], a pairwise alignment method based on fixed-
length stem fragments defined by means of McCaskill’s
algorithm [52]. Murlet [53] is another such aligner that first esti-
mates the base pairing and match probabilities before running
the Sankoff algorithm with these probabilities to estimate the
final alignment. In MARNA [54], the structural information is

Multiple sequence alignment modeling | 5

 at U
niversite L

aval on N
ovem

ber 28, 2015
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

Deleted Text:  &ndash; 
Deleted Text:  
Deleted Text:  (ML)
Deleted Text: ``
Deleted Text: ''
Deleted Text: MSA methods (
Deleted Text: )
Deleted Text: ``
Deleted Text: ''
Deleted Text: ,
Deleted Text: ,
Deleted Text:  
Deleted Text:  very
Deleted Text: to
Deleted Text: &ndash; 
Deleted Text: -
Deleted Text: ultiple Sequence Alignment
Deleted Text:  
Deleted Text:  
Deleted Text: 2.1 
Deleted Text: Sequence
Deleted Text: Structure 
Deleted Text: Multiple 
Deleted Text: Alignments 
Deleted Text:  
Deleted Text: 2.2 
Deleted Text: Multiple 
Deleted Text: Sequence 
Deleted Text: Aligners
Deleted Text:  
Deleted Text: below 
Deleted Text: -
Deleted Text: -
Deleted Text:  
Deleted Text: -
http://bib.oxfordjournals.org/


used for pairwise RNA comparisons before joining them into a
MSA with T-Coffee. PMcomp [55] is a method for progressive
multiple alignments based on a McCaskill’s algorithm to gener-
ate and then compare base pairing probability matrices, which
enables lightweight computation. For this purpose, it uses a
base pair-based energy model instead of the original loop-based
energy model.

PMcomp simplifies Sankoff’s model by predicting only a sin-
gle consensus structure and has been an important source of in-
spiration of the development of many RNA aligners such as
LocARNA [56], FoldAlignM [57] and LocARNA-P [58] (Figure 1)
that use additional heuristics to further restrict the folding
space to be explored, thus resulting in an O(n4) time complexity.
CARNA [59] extends the PMcomp model to pseudoknot struc-
tures (Figure 1). RAF [60] combined the ideas of [61] and [55], re-
sulting in a lightweight Sankoff-variant with sequence-based
speed up. SPARSE [62] is one of the newest algorithm in the
Sankoff-style category. It is reliable. It runs in quadratic time
thanks to its reliance on ‘sparsified’ prediction and RNA align-
ments based on their structure ensembles. Compared with
LocARNA, SPARSE achieves similar alignment and better folding
quality in significantly less time (speedup: 3.7). Another ap-
proach that StrAl [63] implements is a scoring scheme that com-
bines sequence similarity with pairing probability. This fast
heuristic allows a runtime similar to ClustalW. T-Lara [64] im-
plements a graph-based representation of sequence-structure
alignments modeled using integer linear programming. The re-
sulting alignments are then further integrated into a T-Coffee
style library using Lagrangian relaxation and eventually
resolved into an MSA model using T-Coffee. RNAsampler is a
sampling-based algorithm able to find common RNA structures
in multiple RNA sequences [65]. The program probabilistically
samples aligned RNA stems based on inter-sequence base align-
ment probabilities and stem conservation calculated from
intra-sequence base-pairing probabilities. Another example is
RNAcast [66], which for each sequence predicts structure pro-
files within a defined minimum free-energy threshold and then
computes the optimal consensus structure that is shared by all
the RNAs.

More recently, following up on T-Lara, systematic attempts
were made to apply the consistency paradigm to secondary
structure predictions. One can do so by considering libraries
made of pairs of pairing residues. This principle has been de-
veloped in R-Coffee [67], which adopts a pre-folding approach,
predicting with RNAplfold [68] the shape of the individual RNA
sequences in an early step. Subsequently, the program esti-
mates the MSA with the highest agreement between structures
and sequences. A similar approach was later developed in the
RNA compliant version of MAFFT [69], where consistency is
measured by combining pairs of paired residues across combin-
ation of triplets. Both packages achieve comparable levels of ac-
curacy, the main strength of R-Coffee being its capacity to
combine complex pairwise RNA aligners like Consan into highly
accurate multiple aligners.

The scarcity of RNA 3D information probably explains why
so little attention has so far been given to the generation of ac-
curate 3D structure-based multiple RNA alignments. The situ-
ation is slowly changing with several novel algorithms recently
described to deal with this problem. Existing tools include pair-
wise aligners like ARTS [70], SARA [71], DIAL [72] and R3D Align
[73], and multiple ones like SARSA [74], LaJolla [75] and SARA-
Coffee [76]. The heuristic nature of these algorithms tends to
make them error prone, hence the importance of RNA-specific
MSA editors. Many such tools are available (4SALE [77],

CONSTRUCT [78], JPHYDIT [79], RALEE [80], SARSE [81]) and able
to dynamically display secondary and compensatory informa-
tion while editing RNA MSAs.

It is important to note that these algorithms only work well
when dealing with RNA-containing evolutionary conserved
secondary structure. In their validation of the SARA-Coffee al-
gorithm, Kemena et al. [76] reported that when <70% of the nu-
cleotides are involved in evolutionary-conserved Watson and
Crick base pairs, structure-aware aligners like those listed
above tend to degrade alignment accuracy. This degradation
is a mechanical consequence of the explicit algorithmic at-
tempt to seek and match secondary structures under the as-
sumption that these should be homologous. In practice,
however, the structures may not be conserved, or not properly
predicted, especially in cases where protein/RNA interaction
play a role on the in vivo RNA fold. This problem is especially
important when considering the issue of aligning long non-
coding RNA (lncRNA), the most recently described class of
RNA genes [82]. So far, no indication of extensively conserved
secondary structure has been reported for these genes, which
makes it increasingly likely that this new category of tran-
scripts will require a new generation of aligners in the years to
come, possibly motif biased and drawing on the recent report
that dinucleotide information can help improve lncRNA align-
ments [83, 84].

Multiply aligning non-transcribed sequences

The increasing availability of complete genomes makes it a
pressing need to develop non-transcribed intergenic sequence
alignment tools (Figure 1). Indeed, these sequences come with
challenges of their own: extreme length, poor conservation,
order variations (inversions, translocations and duplications)
and the extreme molecular clock heterogeneity resulting from
the wide range of functions supported in different ways by the
untranslated part of the genome. This last issue is likely to be-
come increasingly important as novel genomic functions, often
associated with epigenetics, keep being reported [85, 86].

Multiple genome alignments

While standard sequence aligners usually imply the modeling
of three evolutionary operations, insertion, deletion and substi-
tutions, genome-scale alignments must incorporate at least
three more operations: inversions, translocations and duplica-
tions. In general, multiple genome aligners achieve this through
two separate steps. In a first step, homologous genomic frag-
ments are sorted into bins, and in a second step, these bins are
turned into standard MSA models. This last step usually de-
pends on standard progressive aligners, algorithmically similar
to the ones described in the first part of this review.

While the first alignment step could rely on a simple cluster-
ing/segmentation approach, such a procedure would yield dis-
connected MSA blocks, giving few insights into genomic
evolution. For this reason, most new-generation genome align-
ers rely on the sorting by reversal algorithm for the segmenta-
tion step. Sorting by reversal is an NP-complete problem that
amounts to reconstructing the minimum chain of events that
would edit one genome into another using a series of transloca-
tions and inversions [87]. It is not necessary to solve this prob-
lem to align genomes, but it helps quantifying the evolutionary
cost of alternative alignments. In practice, most algorithms start
by seeking colinear segments, often relying on anchor points
(usually proteins) gathered using an all-against-all BLAST
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procedure. The most popular procedures include Mercator [88]
that uses protein anchors, MUMS/Mems (Mugsy [89] or the sys-
tematic use of local alignments [90].

TBA [91] was one of the first algorithm to consider a multiple
genome alignment (MGA) as a set of separate blocks rather than
a continuous sequence, thus making data processing a neces-
sary prerequisite (Figure 1). In the newest generation of MGAs,
the pre-processing has become tightly integrated with the align-
ment process, as in Mercator-Mavid [88] or Enredo/Pecan [92],
which uses graph structures (Figure 1) to identify the different
genome rearrangements, splits the multiple genomes accord-
ingly and feeds the resulting bins of multiple sequences to
Pecan, a space-efficient consistency-based aligner using the
Durbin forward-only linear space dynamic programming pro-
cedure [22]. Other graph structures (e.g. A-Brujin graph [93],
Cactus graph [94]) have been used for this purpose (see Kehr
et al. [95] for a comparison of different graph structures).
Another alternative is to simultaneously carry out alignment
and segmentation in a progressive way. This procedure de-
veloped by Brudno [90] uses the equivalent of consistency to
identify rearrangements most likely to be supported by the
whole data set.

MGA method development has, however, been hampered by
the difficulty to objectively assess the relative merits of each
aligner. In contrast with proteins or RNA sequences, no such
thing as a structure or its equivalent is available for genomes,
and when the Alignathon [96] contest proposed to compare the
capacities of MGAs on eukaryotic data, the benchmarking was
eventually carried out using the PSAR objective function [97], a
sequence-based estimator relying on probabilistic sampling.
The PSAR objective function was initially developed to evaluate
genomic MSAs. Its principle is somehow similar to the consist-
ency-based approach of T-Coffee, though more complete and
more computationally demanding. In PSAR, given a data set, all
sequences are removed in turn, the remaining sequences re-
aligned and the removed sequence realigned to the sub-align-
ment. The stability of the realignment with respect to the input
MSA is then used to estimate the reliability of each residue pos-
itioning within the final alignment model. This procedure is
generic with no constraint limiting it to nucleotide alignments.
It has, however, so far only been tested and benchmarked on
simulated genomic data sets.

The Alignathon contest remains the only generic attempt to
compare the reliability of multiple genome aligners. 13 MGA
packages were compared on either Drosophila genomes or artifi-
cially generated mammalian genomes. As pointed out by the
authors themselves, a major issue in this work is the design of
an acceptable standard of truth. The Alignathon coordinators
took the decision to use the PSAR objective function as a stand-
ard of truth. Such a decision comes with important caveat, pos-
sibly reflected in the clear dominance of PSAR-align—a package
explicitly optimizing this function—over most alternative
aligners. Of more relevance is certainly the measure made by
the authors of the agreement between aligners. In the corres-
ponding Jaccard index analysis, they found that on the
non-simulated fly genomes, over 50% of the aligned positions—
at the nucleotide levels—are inconsistent between pair of meth-
ods (Figures 8B and C in the considered report). Such dispersion
should be taken as a measure of the complexity one faces when
trying to develop a generic DNA aligner. In contrast, more
focused effort on well-defined genomic regions can be used to
deliver high-quality alignments of functionally homologous re-
gions. This approach has been successfully developed and used
to study eukaryotic genome promoters.

Multiple promoter alignments

MGAs aim at using the genome reordering information so as to
better understand evolutionary relationships and possibly iden-
tify functional constraints associated with gene organization
conservation. In this context, promoter multiple comparisons
are probably the best example of functional multiple align-
ments, aiming at uncovering common regulatory patterns be-
tween related sequences. These patterns are used to reveal
transcription factor binding sites (TFBS). From an algorithmic
point of view, the problem can be separated into two distinct
categories: motif discovery among unaligned non-homologous
(or distantly related sequences) and regular MSAs. The motif-
finding techniques relevant for promoter analysis have been ex-
tensively reviewed in (see, e.g. [98, 99] for reviews), and their de-
scription is beyond the scope of this review.

Methods for the discovery and comparison of homologous
promoter regions are more recent. They were initially reported
for the discovery of TFBS, through a process often referred to as
evolutionary foot printing. Several methods have been
described for that purpose. For instance, in [100], potential bind-
ing sites are first predicted on single sequences and then used
as anchors during the alignment process. Another strategy is to
use an alternative scoring scheme on the positions within a se-
quence known to fit a regulatory element [101]. This more or
less amounts to dressing up a sequence with profile weight
matrices that define a position-specific scoring scheme. The
main limitation, however, of these motif-based methods is their
reliance on pre-computed sets of reference motifs. As an alter-
native, one can simultaneously identify the motifs and align the
sequences as proposed in [102, 103]. Other methods can also
model inversions and translocation, thus taking into account
the fast motif turnover reported in promoter regions [106]. All
these methods are computationally too intensive to scale-up
over a few (usually two) sequences, and scalable alternatives
have been proposed for multiple sequence analysis [104]. It is
also possible to fine-tune existing methods for multiple pro-
moter alignments, as shown by Erb et al. [105]. In this work, the
authors optimized three popular methods (MAFFT, Muscle,
T-Coffee) for their capacity to effectively align experimentally
proven homologous TFBS. The tuning also tooks into account
the discriminative capacity between alignments of orthologous
and paralogous gene regions.

Benchmarking multiple aligners accuracy

Quantifying the accuracy of multiple aligners is just as critical
as aligning sequences, especially when considering the aligners
approximate nature. This seemingly obvious aspect has been
generally overlooked by the community as reflected by the rela-
tive lack of correlation between the packages overall usage and
their reported accuracy. ClustalW, for instance—whose 42 000
citations suggest a global usage level higher than all other pack-
ages put together—has not been consistently reported as the
most accurate method. This surprising observation probably re-
flects on a combination of factors. The most obvious is the rela-
tionship between benchmarks rankings and day-to-day
usability. It is likely that ClustalW, even though it does not rank
#1 on all benchmarks, is nonetheless sufficiently accurate for
many modeling activities, especially when dealing with ortholo-
gous data sets. One may also speculate on the existence of a
strong methodological inertia within the biological community,
where tool usage tends to snowball through protocol recycling.
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The most critical component of an MSA is its scoring/object-
ive function, the mathematical formula that quantifies the total
score and therefore defines optimality, given a set of sequences.
The rest of the algorithm is an optimization procedure attempt-
ing to generate an MSA model that maximizes the objective
function. It is well established that even the best objective func-
tions are merely approximations trying to model the behavior
of biological sequences [107]. As a consequence, there is no
guarantee that a perfectly optimized MSA will systematically re-
sult in the most biologically meaningful MSA. This is the reason
why multiple aligners also need to be evaluated/benchmarked
for their capacity to produce correct alignments. A benchmark-
ing procedure relies on existing collections of reference align-
ments considered as gold standards. These reference MSAs are
routinely used as predictors for the accuracy of a given aligner
on a given type of data sets and have had a major influence on
methodological developments. Existing protein benchmark col-
lections were recently extensively and critically reviewed in
[108] and [109] where the authors propose to group benchmarks
in four categories: simulation based, consistency based,

structure based and phylogeny based. The latter three catego-
ries meet the criterion of reference data sets, in that they can be
pre-compiled and used to quantify the relative merits of one
aligner over another. The simulation-based benchmarks, how-
ever, define an objective function rather than a benchmark pro-
cedure and cannot be considered a benchmark measure in the
same sense as the others.

Structure-based protein benchmarks

Multiple aligners benchmarking has largely been driven by the
use of structure-based reference MSAs, BAliBASE [110] being the
most widely used. These benchmarks all rely on structure-
based reference alignments to evaluate any aligner able to
handle their sequences (Figure 2). It has become customary to
report new aligners along with the benchmark readouts estab-
lished on at least two available structure-based reference data
sets. This probably owes to the surprisingly low consistency be-
tween benchmarks. Indeed, as shown in [4], aligner’s rankings
established on the basis of the most common benchmarks are

Figure 2. Main benchmark methods and their most relevant properties. On the heatmap, orange entries indicate a property describing a given method. Both properties

and benchmarks were clustered by similarity.
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on average <50% consistent. This means that if a given bench-
mark suggests that method A is more accurate than method B,
there is less than one chance of two that the same ranking is
supported by another benchmark collection. In his detailed ana-
lysis of available benchmarks, Edgar suggested SABmark [111]
to be the most complete and informative, but only when using a
subset of SABmark made of compatible pairwise structural
alignments.

The growing need for large-scale aligners has resulted in the
development of a new benchmark generation able to estimate
alignment accuracy when assembling large data sets. The main
issue when doing so is the scarcity of structural information. Of
the 16 230 Pfam families with experimental structural informa-
tion, about 50% merely have one member with a known 3D
structure, and 25% have two members only. To accommodate
this limitation, reference data sets were built by embedding se-
quences with a known structure within larger data sets made of
sequences with unknown structure. This approach already
used in PREFAB [12]—with two sequences of known structure
embedded within a data set of 50 sequences—has been ex-
tended in HomFam [14, 112], so as to define much larger data
sets of up to 100 000 sequences in which an average of 10 se-
quences with known structures are embedded. When doing so,
accuracy is estimated by first aligning the large data sets. The
projections of sequences with known structures are then ex-
tracted and accuracy is quantified by comparing these projec-
tions with the reference. In this procedure, the main caveat lies
in the assumption that the seed sequence accuracy reflects well
the global data set. This assumption is, however, only correct if
the sequences with known structures are evenly distributed
within the considered data set.

Structure-based benchmarking does not necessarily depend
on a reference alignment, and alternative methods have also
been designed that rely on structural superposition rather than
structural superposition-induced alignments. These develop-
ments were mostly the consequence of work by Lackner [114],
who reported on situations where the structure-based super-
position is ambiguous enough to support equally well several
alternative sequence alignments. When this occurs, the refer-
ence alignment becomes the arbitrary prioritization of one ref-
erence over another, thus biasing the benchmark process. Most
reference benchmarks deal with this problem by specifying core
regions in which the reference alignment is expected to be less
ambiguous, but this procedure remains dependent on the way
in which core regions are defined. A more general alternative
exists that involves comparing intra-molecular distances be-
tween pairs of aligned residue pairs. This measure, named
iRMSD [115], makes it possible to quantify the structural fit
implied by an alignment without having to rely on a reference.

Structure based RNA alignment benchmarks

Structural benchmarks have also been developed for RNA align-
ment evaluation (Figure 2). Three such benchmarks exist.
BAliBASE [116] is the most commonly used. It makes it possible
to evaluate the accuracy of a multiple aligner on RNA sequences
by considering the modeling capacity of the evaluated aligner
with respect to some reference secondary structure. This de-
pendence on sequence (on which the secondary structure esti-
mation is based) slightly limits its scope, as it implies common
dependencies between the reference compilation and the
evaluation procedure. BraliDart [76], a newer data set, that is
only based on structural information and contains sets of hom-
ologous RNA families with known experimental structures, has

been recently reported. This data set is limited by the relative
scarceness of experimental RNA 3D structures. Another specifi-
city of BraliDart is its non-reliance on a reference structural
alignment but rather on the structural fit implied by the se-
quence alignment using a distance RMSD measure, as defined
by the iRMSD method. The third main category of RNA bench-
mark is made of ribosomal RNA reference alignments [113].
They have not been assembled for benchmarking purposes, but
rather as a consequence of the importance of accurate riboso-
mal RNA (rRNA) alignments when estimating the tree of life.
These alignments have been done manually while taking into
account highly conserved rRNA secondary structures that play
critical roles in the ribosome functional capacities. At the time
we write this review, no reference data set has yet been pub-
lished to validate the MSAs of long non-coding RNAs, a recently
described population of transcripts.

Simulated data sets for evolutionary analysis

Although empirical data benchmarks are the most commonly
used strategies to evaluate alignment methods, they remain
limited by their dependence on structural data and the lack of
such data for the evaluation of certain kinds of alignments—
such as non-transcribed DNA. Furthermore, it remains to be es-
tablished to which extent structure-based alignments can be
expected to be evolutionarily correct. This question is especially
critical considering that phylogenetic modeling is one of the
main applications of MSA modeling. A major issue of the most
popular aligner methods is their systematic reliance, and pos-
sible tuning on structurally correct sequence alignments. These
methods are, however, often used to carry out phylogenic re-
construction. This inconsistency has long been pointed out by
the evolutionary community, which routinely relies on simu-
lated data sets rather than empirical ones [117].

Simulated data sets rely on models mimicking evolution to
generate sequences whose diversity is expected to represent a
true evolutionary process. The main strength of this approach
is to provide a perfectly traceable model, in which the relation-
ship between nucleotides or amino acids is explicitly known.
Their most obvious drawback is to rely on evolutionary models
assumed to be correct, while the true extent to which they rep-
resent biologically realistic scenarios remains unknown. In any
case, these approaches are useful when estimating the impact
of extreme conditions on modeling capacity, for instance accel-
erated evolution, long-branch attraction and similar effects that
can confound standard analysis. Several packages have been
designed to generate simulated data sets (Figure 2), the most
widely used being Rose [118], Seq-Gen [119], Dawg [120] or
INDELible [121].

When using these packages, the simulated alignments are
considered as ‘true’ alignment, thus making it possible to use
the same scoring system (Sum of Pairs Score, SP, or Column
Score, CS [122]) as for empirical benchmarks. It is worth noting
that whenever simulated and structure-based reference data
sets have been used to validate similar algorithms for alignment
accuracy, the rankings were found to differ significantly be-
tween these two groups of benchmarks, a clear indication that
different alignment characteristics are being evaluated [4, 123].
All phylogeny-aware aligners are currently evaluated using
these simulated data sets. When doing so, the evaluation is
often done on tree modeling capacity rather than on the MSA it-
self. Such algorithms include [117, 124–126].

Resolving the apparent discrepancies between structure-
based and simulated reference data sets will probably require a
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better understanding of the complex relation between align-
ment accuracy and trustworthy phylogenetic reconstruction.
Moving one step in this direction, Dessimoz and Gil recently
introduced tree-based tests of alignment accuracy, which not
only use large and representative samples of real biological
data, but also enable the evaluation of the effect of gap place-
ment on phylogenetic inference [127]. In an unrelated work [35],
Chang and coauthors proposed the use of empirical data sets
obtained by enriching collections of orthologous genes in fami-
lies likely to support the Tree of Life. When using such data
sets, the discrepancy between phylogenetic and structural cor-
rectness appears to be less marked.

Quality indexes for the estimation of MSA
reliability

Given the approximate nature of all available aligners, identify-
ing the trustworthy portions of an alignment is probably of
higher practical importance than knowing the overall expected

accuracy. Over the past few years, new methods have been re-
ported aiming precisely at this (Figure 3). They can be roughly
divided in three categories: those using structural information
to assess protein or RNA accuracy, those depending on a con-
servation index to identify the positions most likely to be cor-
rect and methods depending on some form of local numerical
instability to identify the most stable portions of an MSA model.

Structural conservation indexes

With increasingly available structural data, the systematic use
of 3D information for the monitoring of MSA accuracy is slowly
becoming a realistic prospect. The first such methods [41, 128]
were designed using the structural accuracy measured on all
possible pairs of sequences with a known 3D structure as a
proxy for global accuracy. This approach is useful but suffers
from the major limitation that is the limited number of protein
and RNA families for which more than one structure is available
(about 25% of all PFAM families with a known structure, and
<1% in RFAM). Recent efforts were therefore focused toward the

Figure 3. MSA quality indexes and their features. Features with zero are not used by the specific quality index.
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use of single structures to estimate MSA accuracy. The CAO
contact substitution matrix [129] is one of the earliest work in
this direction. The principle is to embed a sequence with a
known structure in the MSA. This structure is then used to iden-
tify putative amino-acid contacts and the corresponding col-
umns are then reevaluated using the CAO, a 400� 400
substitution matrix assigning a score to every possible contact
substitution. Unfortunately, the estimation of this matrix is lim-
ited by the lack of available data. This problem was addressed
by the STRIKE algorithm [130], in which the contact substitution
matrix is replaced with a contact potential metrics that considers
the score of all potential contacts, as obtained from structural
data. When using this matrix to evaluate an MSA, column con-
tacts—as implied by at least one embedded structure—are eval-
uated by summing the contact score found in the contact log-odd
matrix. This approach was shown to be significantly superior to
CAO as a mean to discriminate between alternative alignments.

Sequence conservation indexes

Sequence conservation is one of the most straightforward ways
of estimating MSA accuracy. A large number of tools have been
developed for this purpose that roughly fall in two main catego-
ries: structural (i.e. structural estimates using sequence infor-
mation) and evolutionary indexes. The evolutionary indexes
aim at identifying within an MSA all positions likely to hamper
phylogenetic reconstruction. These indexes are usually focused
on the removal of diverse columns or indel-enriched regions.
The most commonly used tools are Gblocks [131,132] and trimAl
[136], a re-implementation of Gblocks using an automated par-
ameterization procedure to adjust the filtering level. While
these tools are extremely popular and form part of many large-
scale phylogenetic pipelines, the actual value of column filter-
ing remains a point of discussion. Two recent reports suggest
that filtering could decrease MSA phylogenetic modeling poten-
tial [28, 35]. Similar tools have been developed to estimate the
structural correctness of protein MSAs. The simplest ones like
AL2CO [133] merely measure conservation according to various
physicochemical criterions. Columns and residues eventually
get assigned an index value that can be used when doing mod-
eling. More sophisticated variations include RASCAL [137], an
MSA scanning procedure meant to identify spurious regions
within an MSA.

Alignment stability indexes

The most widely used MSA packages rely on a combination be-
tween the progressive algorithm and more or less sophisticated
dynamic programming implementations, allowing pairwise
alignments of sequences or profiles. These dependencies make
these algorithms inherently unstable. Over the past few years,
the development of methods able to quantify this instability to
estimate local reliability has become a fast growing trend. The
idea of using robustness as an indicator of biological accuracy is
not new and had already been used as early as 1996 [138] in a
procedure that involved removing in turn every pair of amino
acid in a pair of sequences before realigning them, so as to as-
sess local alignment stability. Later on, the T-Coffee objective
function [107] was used to show the predictive power of consist-
ency. In general, any procedure that may be used to perturbate
an alignment lends itself to the definition of a robustness index.
Such indexes can then be evaluated for their correlation with
structural or phylogenetic modeling potential. The Head or Tail
(HoT) procedure [134] is a good example of a simple method

(sequences are simply inverted), yielding useful information at
the cost of a moderate computational overhead. Other similar
procedure albeit more costly have been described. PSAR is one
of them [97]. It is a method that involves generating several al-
ternative MSAs while removing each sequence in turn. Another
such procedure is named GUIDANCE [135, 139], where the MSA
is reestimated several times using guide trees estimated from
bootstrap replicates of the original MSA. The main issue with
these two approaches is their relatively high computational
cost. These methods are, however, much more informative
than their sequence conservation alternatives. In a recent re-
port, the T-Coffee consistency score [35] has been shown to out-
perform both HoT and GUIDANCE for the identification of
structurally correct portions within MSAs and both trimAL and
Gblocks for the construction of accurate phylogenetic trees.

Conclusion

This review is an attempt to put in context and cover the develop-
ments that have taken place in the field of MSAs over the past
decade or so. The unprecedented pace of development makes it
difficult to be truly exhaustive. We have nonetheless tried to pro-
vide the reader with an overview of the main aspects, and how
they connect to one another. As shown in Figure 1, the progres-
sive alignment framework (aligning the sequences following a
tree-order) is the main algorithmic heuristic that has been
adopted by almost all existing alignment methods. Further, we
can observe a clear clustering of the methods based on the type
of sequences they are designed to align (RNA, DNA/genomes or
proteins). It is also worth noting that the current inflation in the
number of available methods merely reflects the growing pace of
data accumulation. MSA modeling is one of the most powerful
ways to make sense of biological sequences. MSAMs, by their ap-
proximate nature, are doomed to follow a red-queen evolutionary
strategy and will need to keep evolving, faster and faster, to keep
up with the processing of standard biological data.

Key Points
• This review provides an overview on the development

of Multiple Sequence Alignment (MSA) methods and
their main applications.

• MSA method is one of the most powerful and widely
used modeling methods in biology, and a series of al-
gorithmic solutions has been proposed over the years
for the alignment of evolutionarily related sequences,
while taking into account evolutionary events such as
mutations, insertions, deletions and rearrangement
under certain conditions.

• We report on the main development of these past 10
years that include: the development of consistency
based methods, the development of sequence/struc-
ture alignment methods, the development of structure
based RNA aligners and the development of index-
based filtering methods.

• The main challenges for multiple sequence aligners
will be to keep up with growing data set sizes and ef-
fectively deal with nucleic acid alignments.

Funding

This work was supported by the Spanish Ministry of
Economy and Competitiveness (grant no. BFU2014-55062-P);
the Secretariat of Universities and Research, Dept. of

Multiple sequence alignment modeling | 11

 at U
niversite L

aval on N
ovem

ber 28, 2015
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

Deleted Text:  
Deleted Text: -
Deleted Text: x
Deleted Text:  &ndash; 
Deleted Text:  - 
Deleted Text: 5.2 
Deleted Text: Conservation 
Deleted Text: Indexes
Deleted Text:  
Deleted Text:  very
Deleted Text: s
Deleted Text: [137
Deleted Text: -
Deleted Text: 5.3 
Deleted Text: Stability 
Deleted Text: Indexes
Deleted Text: l
Deleted Text: r
Deleted Text:  very
Deleted Text: -
Deleted Text:  (TCS)
Deleted Text: and 
Deleted Text:   
Deleted Text: multiple sequence alignment
Deleted Text: l
Deleted Text:  method
Deleted Text:  very
Deleted Text:  in order
Deleted Text: Multiple Sequence Alignment (
Deleted Text: )
Deleted Text: ,
Deleted Text: -
Deleted Text: l
Deleted Text: ten
http://bib.oxfordjournals.org/


Economy and Knowledge of the Government of Catalonia
(2014 SGR 1114); the “la Caixa” International Fellowship
Programme for a predoctoral fellowship at the CRG to M.C.; and
the Spanish Ministry of Economy and Competitiveness,
“Centro de Excelencia Severo Ochoa 2013-2017”, SEV-2012-0208.

References
1. Van Noorden R, Maher B, Nuzzo R. The top 100 papers.

Nature 2014;514:550–3.
2. Thompson J, Higgins D, Gibson T. CLUSTAL W: improving

the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res 1994;22:4673–90.

3. Thompson JD, Linard B, Lecompte O, et al. A comprehensive
benchmark study of multiple sequence alignment methods:
current challenges and future perspectives. PLoS One
2011;6:e18093.

4. Kemena C, Notredame C. Upcoming challenges for multiple
sequence alignment methods in the high-throughput era.
Bioinformatics 2009;25:2455–65.

5. Edgar RC, Batzoglou S. Multiple sequence alignment. Curr
Opin Struct Biol 2006;16:368–73.

6. Notredame C, Higgins DG. SAGA: sequence alignment by
genetic algorithm. Nucleic Acids Res 1996;24:1515–24.

7. Hogeweg P, Hesper B. The alignment of sets of sequences
and the construction of phylogenetic trees: an integrated
method. J Mol Evol 1984;20:175–86.

8. Needleman SB, Wunsch CD. A general method applicable to
the search for similarities in the amino acid sequence of two
proteins. J Mol Biol 1970;48:443–53.

9. Notredame C, Higgins DG, Heringa J. T-Coffee: a novel
method for fast and accurate multiple sequence alignment.
J Mol Biol 2000;302:205–17.

10. Do CB, Mahabhashyam MS, Brudno M, et al. ProbCons: prob-
abilistic consistency-based multiple sequence alignment.
Genome Res 2005;15:330–40.

11. Wallace IM, O’Sullivan O, Higgins DG. Evaluation of iterative
alignment algorithms for multiple alignment. Bioinformatics
2005;21:1408–14.

12. Edgar RC. MUSCLE: multiple sequence alignment with high
accuracy and high throughput. Nucleic Acids Res
2004;32:1792–7.

13. Katoh K, Misawa K, Kuma K, et al. MAFFT: a novel method
for rapid multiple sequence alignment based on fast Fourier
transform. Nucleic Acids Res 2002;30:3059–66.

14. Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation
of high-quality protein multiple sequence alignments using
Clustal Omega. Mol Syst Biol 2011;7:539.

15. Saitou N, Nei M. The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Mol Biol Evol
1987;4:406–25.

16. Murtagh F. Complexities of hierarchic clustering algorithms:
state of the art. Comput Stat Q 1984;1:101–13.

17. Wheeler TJ, Kececioglu JD. Multiple alignment by aligning
alignments. Bioinformatics 2007; 23:i559–68.

18. Morgenstern B, Frech K, Dress A, et al. DIALIGN: finding local
similarities by multiple sequence alignment. Bioinformatics
1998;14:290–4.

19. Kececioglu JD. The maximum weight trace problem in multiple
sequence alignment. Lect Notes Comput Sci 1983;684:106–19.

20. Kececioglu JD, Lenhof HP, Mehlhorn K, et al. A polyhedral ap-
proach to sequence alignment problems. Discret Appl Math
2000;104:143–86.

21. Paten B, Herrero J, Beal K, et al. Sequence progressive align-
ment, a framework for practical large-scale probabilistic
consistency alignment. Bioinformatics 2009;25:295–301.

22. Durbin R, Eddy S, Krogh A, et al. Probabilistic models of pro-
teins and nucleic acids. Biol Seq Anal 1998;14:164–73.

23. Liu Y, Schmidt B, Maskell DL. MSAProbs: multiple sequence
alignment based on pair hidden Markov models and parti-
tion function posterior probabilities. Bioinformatics
2010;26:1958–64.

24. Di Tommaso P, Orobitg M, Guirado F, et al. Cloud-Coffee: im-
plementation of a parallel consistency-based multiple align-
ment algorithm in the T-Coffee package and its
benchmarking on the Amazon Elastic-Cloud. Bioinformatics
2010;26:1903–4.

25. Rausch T, Emde AK, Weese D, et al. Segment-based multiple
sequence alignment. Bioinformatics 2008;24:i187–92.

26. Breen MS, Kemena C, Vlasov PK, et al. Epistasis as the pri-
mary factor in molecular evolution. Nature 2012;490:535–8.

27. Mirarab S, Nguyen N, Guo S, et al. PASTA: ultra-large mul-
tiple sequence alignment for Nucleotide and Amino-acid se-
quences. J Comput Biol 2015;22:377–86.

28. Liu K, Raghavan S, Nelesen S, et al. Rapid and accurate large-
scale coestimation of sequence alignments and phylogen-
etic trees. Science 2009;324:1561–4.

29. Edgar RC. MUSCLE: a multiple sequence alignment method
with reduced time and space complexity. BMC Bioinformatics
2004;5:113.

30. Blackshields G, Sievers F, Shi W, et al. Sequence embedding
for fast construction of guide trees for multiple sequence
alignment. Algorithms Mol Biol 2010;5:21.
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