
Cell identity and function can be characterized at the 
molecular level by unique transcriptomic signatures1. At 
the organismal level, different tissues have distinct gene 
expression profiles2,3, and even cells in consecutive stages 
of embryonic development have highly divergent tran-
scriptomic landscapes4. Consequently, mutations that 
alter these expression profiles have been associated with 
adverse phenotypes ranging from a delayed immune 
response5 to disease6.

Until recently, molecular ‘fingerprints’ were gen-
erated using profiling of gene expression levels from 
bulk populations of millions of input cells7. These 
ensemble-based approaches, whether performed using 
microarrays8 or the next-generation sequencing (NGS) 
approach of high-throughput RNA sequencing (RNA-
seq)9–11, meant that the resulting expression value for 
each gene was an average of its expression levels across 
a large population of input cells. In many contexts, such 
bulk expression profiles are sufficient. For example, in 
comparative transcriptomics, the goal is to study the 
selection pressures that apply to gene expression levels 
between samples of the same tissue taken from different 
species. In this context, a global view of average gene 
expression levels in each tissue, which can be obtained 
from bulk RNA-seq, may be sufficient2,12. Similarly, 
gene expression signatures obtained using ensemble 
approaches have yielded biomarkers that are predictive 
for disease status and clinical progression13.

However, there are also important biological ques-
tions for which bulk measures of gene expression are 
insufficient14. For instance, during early development, 
there are only a small number of cells, each of which 
can have a distinct function and role15–17. Moreover, 
complex tissues, such as brain tissues, are composed 
of many distinct cell types that are typically difficult 
to dissect experimentally18. Consequently, bulk-based 
approaches may not provide insight into whether dif-
ferences in expression between samples are driven by 
changes in cellular composition (that is, the abundance 
of different cell types) or by changes in the underlying 
phenotype. Finally, ensemble measures do not provide 
insights into the stochastic nature of gene expression19,20. 
In these and many other settings, assaying gene expres-
sion at the single-cell level represents a powerful,  
high-resolution tool for biological discovery.

Historically, measurements of the expression of a 
gene at the single-cell level were generated using low-
throughput approaches. Examples of such methods 
are reporter constructs21 or immunohistochemistry 
coupled with microscopy22 at the protein level, and  
single-cell quantitative PCR (qPCR)23 or single-molecule  
RNA fluorescence in situ hybridization (RNA FISH)24 
at the RNA level. Although experiments using these 
approaches provided important insights into transcrip-
tional and translational kinetics19 and the differentia-
tion potential of individual cells25, they were typically 
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Abstract | The development of high-throughput RNA sequencing (RNA-seq) at the 
single-cell level has already led to profound new discoveries in biology, ranging from  
the identification of novel cell types to the study of global patterns of stochastic gene 
expression. Alongside the technological breakthroughs that have facilitated the 
large-scale generation of single-cell transcriptomic data, it is important to consider  
the specific computational and analytical challenges that still have to be overcome. 
Although some tools for analysing RNA-seq data from bulk cell populations can be readily 
applied to single-cell RNA-seq data, many new computational strategies are required to 
fully exploit this data type and to enable a comprehensive yet detailed study of gene 
expression at the single-cell level.

 S I N G L E - C E L L  O M I C S

REVIEWS

NATURE REVIEWS | GENETICS  VOLUME 16 | MARCH 2015 | 133

© 2015 Macmillan Publishers Limited. All rights reserved



Spike-in
A few types of RNA with  
known sequence and quantity 
(generated either artificially  
or from a pool of RNA from a 
distantly related species) that 
are added as internal controls 
in RNA sequencing 
experiments.

Unique molecular identifiers
(UMIs). Tens of thousands of 
short DNA sequences (6–10 
nucleotides in length), which 
are incorporated in molecules 
of interest before amplification, 
thus allowing biases to be 
accounted for.

Technical variability
Variability in gene expression 
levels between cells that arises 
through technical effects.

Read alignment
The alignment of short  
reads generated from a 
next-generation sequencing 
experiment to a reference 
genome or transcriptome.

Gene expression counts
The number of sequencing 
reads or unique molecular 
identifiers that map to a 
particular gene. These raw  
data form the basis of gene 
expression level quantification 
approaches.

limited to the study of a single gene or a small number 
of genes. Consequently, a global picture of the active 
transcriptional landscape within a cell was simply not 
experimentally accessible.

Driven by these limitations, recent experimental 
advances have greatly improved the high-throughput 
generation of cDNA libraries from the polyadenylated 
fraction of mRNA molecules within a single cell26–31. 
Briefly, these protocols typically begin by isolating 
individual cells (manually by fluorescence-activated 
cell sorting (FACS) or by exploiting a microfluidics-
based system) before lysing the cell, capturing the 
polyadenylated fraction of mRNA molecules and 
obtaining cDNA by reverse transcription. The cDNA is 
then amplified, using PCR26,28,29,32 or in vitro transcrip-
tion31, to obtain enough material for hybridization to 
a gene expression microarray15 or, more recently, to be 
profiled using NGS26; in the latter case, the technique 
is referred to as single-cell RNA-seq (scRNA-seq). 
scRNA-seq can now be applied to assay the individual 
transcriptomes of large numbers of cells isolated via 
microfluidics33–36 or other microwell plate-based tech-
niques30. The combination of a large number of cells 
and high-throughput profiling of gene expression at 
the single-cell level is crucial for answering many bio-
logically relevant questions and represents an unprec-
edented opportunity for new discoveries in important 
areas of biology.

However, to ensure that scRNA-seq data are fully 
exploited and interpreted correctly, it is crucial to 
apply appropriate computational and statistical meth-
ods. Given the widespread use of bulk RNA-seq37, 
many powerful tools for processing high-throughput 
transcriptomic data already exist38. However, scRNA-
seq data analysis poses several unique computational 
challenges that necessitate the adaptation of existing 
workflows, as well as the development and application 
of entirely new analytical strategies.

The goal of this Review is to illustrate when bulk 
RNA-seq analysis strategies can be safely applied to 
scRNA-seq data, and to point out new approaches that 
are already available or remain to be developed. We 
focus first on challenges that are common to almost all 
scRNA-seq experiments, before turning to specific ana-
lytical methods that are required to capitalize on three 
key opportunities provided by scRNA-seq: the identi-
fication and characterization of cell types and the study 
of their organization in space and/or time; inference of 
gene regulatory networks and their robustness across 
individual cells; and characterization of the stochastic 
component of transcription.

Incorporating quantitative standards
Before addressing these computational challenges, we 
first outline a fundamental aspect of scRNA-seq experi-
mental design: namely, the incorporation of standards 
that (in conjunction with appropriate analysis strate-
gies discussed below) facilitate quantitative compari-
sons of the expression level of each gene between cells. 
One approach, which is strongly recommended for 
all scRNA-seq experiments, is to use extrinsic spike-in 

molecules. Specifically, a whole-transcriptome spike 
taken from a different species from the cells of inter-
est or a specially designed set of artificial spike-in 
molecules is added to the lysate extracted from each 
cell. The most widely used artificial spike-in mix is the 
External RNA Control Consortium (ERCC) set of 92 
synthetic spikes based on bacterial sequences39. As an 
approximately constant volume of the spike-in mix is 
added to each cell extract (in some instances, varia-
tion in cell size may slightly vary the spike-in volume), 
the fact that the number of molecules of each spike-in 
RNA species should be the same across all single-cell 
libraries can be exploited to normalize gene expression 
levels and to estimate technical sources of variation  
(see below).

Additionally, although some protocols fragment 
and then sequence the amplified cDNA fragments, 
it is also possible to sequence reads derived solely 
from the 3ʹ or 5ʹ end of the amplified transcript. In 
this case, unique molecular identifiers (UMIs) have been 
used to barcode individual molecules. In conjunction 
with spike-ins (which are themselves barcoded before 
amplification), this protocol yields an estimate of the 
number of transcribed molecules that is independent 
of amplification biases40, which are a major source of 
technical variability.

Transcript quantification and quality control
The analysis of scRNA-seq data requires the careful exe-
cution of different computational steps, including read 
alignment and the basic generation of gene expression 
counts, quality control steps, normalization and down-
stream modelling. For several of these tasks, pipelines 
and tools that have been developed for RNA-seq data 
sets generated from bulk cell populations can be reused. 
However, there are important single-cell-specific 
aspects and pitfalls, which need to be considered (FIG. 1).

Read alignment and generation of counts. Read align-
ment and the quantification of expression values is 
the first step in the analysis of RNA-seq data sets. In 
general, most of the methodology developed for bulk 
RNA-seq, including insights for how to best map the 
raw sequencing reads, can be reused for scRNA-seq41–43. 
Similar to bulk data sets, it is important to consider 
biases such as incomplete knowledge of the target 
genome or transcriptome annotation44,45. If synthetic 
spike-ins are used, then the reference sequence should 
be augmented with the DNA sequence of the spike-in 
molecules prior to mapping. When a UMI protocol 
is used, the barcode attached to each read should be 
removed for this read alignment step. Moreover, when 
using spike-ins in conjunction with UMIs, care must 
be taken to ensure that the sequences at the ends of 
the synthetic transcripts are complete. Otherwise, 
it may seem that some spike-ins have lower levels of  
expression than expected.

Subsequently, the mapped reads can be summarized 
to generate expression levels using the same approaches 
that are applied in conventional RNA-seq experiments 
(for example, by applying tools such as HTSeq45, a 
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computational processing package). When UMIs are 
used, these expression counts can be collapsed by sum-
ming the number of unique barcodes associated with all 
reads mapped to a given gene. When performing this 
analysis, care must be taken to account for sequencing 
errors in the UMIs that might result in the appearance 
of ‘ghost’ molecules. To account for this, error correc-
tion of the barcodes and/or removal of singleton bar-
codes may be required40. Finally, although scRNA-seq 
data can, in principle, be used to quantify the expres-
sion of individual exons or to resolve isoform abun-
dances, such analyses are currently challenging owing 
to the large proportion of technical variability and 
biases compared to conventional RNA-seq protocols.

Quality control: how to check the quality of each library 
and discard poor-quality cells. Quality control needs 
to be applied initially to the raw sequencing reads and, 
perhaps more importantly in the context of scRNA-
seq, after alignment when the initial read counts are 
obtained in order to identify poor-quality libraries of 
individual cells.

At the level of the raw sequence files, bulk RNA-seq 
quality control tools, such as fastqc or kraken46, can be 
applied (TABLE 1). Additionally, the data can be visualized 
using tools such as the Integrative Genomics Browser47,48. 
These steps will help to identify potential sample mix-
ups and external contamination, or whether there was 
a problem with the sequencing itself as opposed to 

Figure 1 | Comparison of bulk and scRNA-seq analytical 
strategies. A flow chart of the steps in analysis of high-throughput RNA 
sequencing (RNA-seq) data from bulk cell populations and from single cells 
is shown. Methods that are common to both approaches are shown in 

purple, whereas key differences in analysis methods between bulk-based 
RNA-seq and single-cell RNA-seq (scRNA-seq) are shown in blue and red, 
respectively. FPKM, fragments per kilobase of exon per million fragments 
mapped; PCA, principal component analysis.

Bulk strategy

Alignment and
generation of counts

PCA-regression-like approaches can be used to identify and account for latent structure between samples or cells that 
contributes to the expression landscape but that is independent of the biological quantity of interest. Specialized 
tools61 that use such corrections automatically and that can handle multiple confounding factors can also be used

Clustering approaches based on latent-variable models (with some scRNA-seq modifications) can be used

Differential expression tools50 and transcript usage tools74 built for bulk analyses can generally be applied 

Network reconstruction methods developed for bulk data sets can be exploited80, although adaptations will be required 
to deal with additional levels of technical noise and confounding factors

Confounding factors

Cell type identification

Cell type characterization

Gene regulatory networks

Kinetics of transcription Not feasible with bulk approaches
scRNA-seq tools need to be developed to robustly infer 
the transcriptional kinetics of each gene

Standard approaches adjust for sequencing depth 
(e.g., using FPKM10 or a scaling factor-based 
approach50,51)

For scRNA-seq it is also necessary to decide how to 
normalize for differences in the mRNA content between 
cells. Moreover, 3′ biases in some experimental 
protocols28 mean that normalization approaches that 
adjust for transcript length might be problematic

• Focuses on investigating library quality

• PCA or clustering to confirm that samples of the 
   same class (that is, biological or technical
   replicates) cluster together

In addition to the quality control strategies necessary for 
bulk RNA-seq, it is important to determine whether the 
RNA in each captured cell is degraded. Studying the total 
percentage of mapped reads and the proportion of reads 
mapped to the spiked-in molecules can be useful. Cells 
with aberrant patterns can be discarded from 
downstream analyses

Existing mapping tools (e.g. TopHat42 or GSNAP43) and approaches for generating read counts (e.g. HTseq45) can be used
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Normalization

Quality control

Single-cell-specific aspects
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Duplicated reads
Identical copies of a 
sequencing read generated by 
the PCR amplification process.

Principal component 
analysis
(PCA). A statistical method  
to simplify a complex data  
set by transforming a series  
of correlated variables  
into a smaller number of 
uncorrelated variables called 
principal components.

Fragments per kilobase of 
exon per million fragments 
mapped
(FPKM). A method for 
quantifying gene expression 
levels from RNA sequencing 
data that normalizes for 
sequencing depth and 
transcript length.

Size factors
Quantities used to normalize 
gene expression levels between 
independently generated RNA 
sequencing libraries; they 
account for differences in 
sequencing depth.

the single-cell capture and amplification (for example, 
by examining the proportions of duplicated reads or 
sequences mapped to bacterial genomes).

After establishing that there are no problems with 
the quality of the raw sequencing reads, the next step is 
to ascertain how well RNA was captured and amplified 
from each cell. This is an extremely important part of 
the analysis of scRNA-seq data, as many of the cells 
captured may contain degraded RNA (for example, 
because the cell is stressed33) and should therefore be 
discarded before downstream analysis. This is a more 
serious problem for primary tissue samples, as the pro-
cess of extracting a tissue and then isolating individual 
cells can affect the quality of the RNA obtained.

A first metric that can indicate whether there is 
a problem with the sequencing library generated 
from an individual cell is the fraction of reads that 
map back to the genome of the organism of interest;  
this can be obtained directly from the fastqc output.  
If this value is low, it might indicate that RNA has 
degraded (possibly because the cell has entered apopto-
sis), that there is external contamination, or that the cell 
was inefficiently lysed.

A second metric, which can be computed from the 
fastqc output or directly from the table of counts gen-
erated by HTSeq, is the ratio of the number of reads 
mapped to the endogenous RNA (that is, the genome 
of the organism of interest) to the number of reads 
mapped to the extrinsic spike-ins: a high proportion 
of reads mapped to the spike-ins would be indicative of 
a low quantity of RNA in the cell of interest and might 
be a reason to discard cells (FIG. 2a). However, this ratio 
can vary from cell to cell for biologically relevant rea-
sons: if the cells under study vary substantially in the 

amount of RNA contained (for example, if they are 
captured at different stages of the cell cycle), then this 
ratio would be expected to vary noticeably (see below). 
Nevertheless, cells for which the ratio of spike-ins is 
extremely discordant from the remaining population 
are strong candidates for exclusion.

Finally, a third useful approach for identifying 
problematic cells is to apply principal component analysis 
(PCA) to the gene expression matrix. The expectation 
when applying PCA is that good-quality cells cluster 
together and poor-quality cells are outliers. However, 
in some instances, poor-quality cells may also form 
a second distinct cluster. For example, it has been 
observed that poor-quality cells are often enriched 
in the expression of mitochondrial genes40 (perhaps 
because the cells are undergoing apoptosis), which 
can cause them to cluster separately. This emphasizes 
that outlier analyses must be performed carefully to 
ensure that cells with physiologically relevant differ-
ences are not inadvertently discarded. To prevent this, 
one useful observation is that poor-quality cells typi-
cally display extreme values of the two other metrics 
described above.

Normalization: from counts to expression levels. One 
important computational challenge in scRNA-seq is 
to appropriately normalize the data. In bulk RNA-
seq data, the counts between different libraries are 
standardized by calculating quantities such as the frag-
ments per kilobase of exon per million fragments mapped10 
(FPKM, which is obtained by standardizing transcript 
length and library size) and transcripts per million49, or 
by using size factors to make counts comparable between 
libraries obtained from different samples50,51. However, 
approaches for normalizing bulk RNA-seq data make 
an implicit assumption that the total amount of RNA 
processed in each sample is approximately the same or 
that the variation is technical. This motivates the use of 
normalization strategies that generate relative expres-
sion estimates. In some contexts, this assumption has 
been shown to be misleading (for example, upregula-
tion of MYC leads to a two-fold increase in the number 
of transcripts52,53) but, in general, such approaches are 
still widely used.

In scRNA-seq, the normalization procedure can 
substantially affect the interpretation of the data. 
Below, we consider separately normalization strategies 
for data generated with or without UMIs.

Normalization of scRNA-seq data without UMIs. First, 
we briefly consider how data can be normalized in the 
absence of both UMIs and extrinsic spike-ins. A starting  
point is to apply a bulk-based normalization strategy 
that standardizes the amount of RNA contained in 
each cell — this assumes that the total amount of RNA 
in each cell is the same. However, without external  
spike-in controls, it is difficult to determine how much 
RNA is present in a cell.

When extrinsic spike-ins are used, it is possible to 
accurately estimate relative differences in the total RNA 
content between cells. In particular, as the amount of 

Table 1 | Tools for scRNA-seq analysis

Name For bulk cell 
populations or 
single cells?

Function Ref

Fastqc Bulk population Mapping quality control –

Kraken Bulk population Mapping quality control 46

GSNAP Bulk population Alignment 43

TopHat Bulk population Alignment 42

HTSeq Bulk population Obtaining expression counts 45

Single-cell normalization Single cells Normalization 33

Monocle Single cells Mapping transcripts on 
differentiation cascade

66

DESeq Bulk population Testing for differential 
expression

50

scLVM Single cells Accounting for confounding 
variation in scRNA-seq

61

Single-cell differential 
expression

Single cells Testing for differential 
expression

55

Kinetics of transcription Single cells Identifying kinetic parameters 81

scRNA-seq, single-cell RNA sequencing. In this table, some common tools for the analysis  
of scRNA-seq data are described. We note that this list is not exhaustive, especially in relation to 
the suggested tools for analyses of bulk RNA-seq data sets, but instead is meant to give some 
examples of tools that can be used at all stages of scRNA-seq analysis. See Further Information.
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Figure 2 | Quality control and normalization. a | Basic quality control steps are shown. After generating single-cell 
RNA sequencing (scRNA-seq) data, a key first step is to assess the quality of the data. In addition to quality metrics 
developed for bulk RNA-seq, it is important to determine whether cells have been captured efficiently and the mRNA 
fraction amplified faithfully. Two simple but important criteria are to compare the percentage of unmapped reads and 
the percentage of reads mapped to the external spike-in molecules across cells. Cells in which either of these values is 
high (grey) are of poor quality and should be discarded, leaving only the higher-quality cells (green) for downstream 
analyses. b | Spike-ins can be used to model technical variability and examine relative variability in cell size for 
non-unique molecular identifier (UMI)-based scRNA-seq data. If external spike-in molecules are added at the same 
volume to the RNA mixture from each cell before processing, they can be used to quantify the degree of technical 
variability across cells and to examine the relationship between technical variation and gene expression (upper panel). 
The x axis shows average expression levels across cells, and the y axis shows the squared coefficient of variation; blue 
points are extrinsic spike-in molecules. The red line indicates the fitted relationship between technical noise and gene 
expression strength. Additionally, by calculating the ratio between the numbers of reads mapped to the spike-in 
sequences and to the genes from the organism of interest, the relative amount of mRNA contained in each cell can be 
estimated (lower panel). c | Spike-ins can also be used to model technical variability and to examine relative variability 
in cell size for UMI-based scRNA-seq data. Similar to part b, the upper panel illustrates the relationship between 
technical noise and expression strength — the difference is that the expression level of each gene is now quantified as 
the number of unique cDNA molecules. Additionally, spike-ins can be used to quantify the capture efficiency and thus 
infer the number of mRNA molecules contained in the lysate of each cell (lower panel). Upper panels of parts b and c 
adapted from REF.|33 and REF.|40, respectively, Nature Publishing Group.
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Allele-specific expression
Gene expression levels 
measured separately for each 
of the two parental alleles.  
RNA derived from each  
allele can be quantified and 
assessed separately when  
RNA sequencing reads overlap 
with heterozygous sites in  
the genome.

Capture efficiency
The percentage of mRNA 
molecules in the cell lysate  
that are captured, amplified 
and sequenced. This is 
normally quantified using 
spike-in molecules.

spiked-in material is assumed to be constant across 
cells, it is easy to calculate the ratio of the number of 
reads mapped to the genome of interest to the number 
of reads mapped to the spike-ins33. When compared 
between cells, this ratio allows differences in the amount 
of RNA within a cell to be inferred (FIG. 2b).

Given such data, the counts associated with each 
gene can be converted into absolute numbers of mRNA 
molecules based on the levels of the spike-ins, which 
have been added at a known concentration. A caveat 
is that the most common set of spike-ins (the 92-spike 
ERCC set) are 500–2,000 nucleotides in length, which 
is shorter than an average human mRNA (~2,100 
nucleotides including untranslated regions54). Given 
the 5ʹ-to-3ʹ  length bias that is inherent to many 
scRNA-seq protocols, where the 3ʹ bias is more pro-
nounced for longer transcripts28, a conversion based on 
the shorter ERCC spike-ins is potentially problematic. 
Additionally, the ERCC spike-ins have comparatively 
short poly(A) tails and lack 5ʹ caps, which may result 
in different efficiency of their reverse transcription  
relative to the endogenous RNA molecules.

Consequently, it is challenging to devise a univer-
sally applicable normalization strategy for scRNA-seq 
data that properly accounts for variability in sequenc-
ing depth and in cell size. In many cases, a sensible 
and pragmatic approach is to calculate two alterna-
tive size factors: one for the spike-ins and one for the 
endogenous mRNA molecules33. The size factor for  
the spike-ins accounts solely for sequencing depth 
(as the spike-ins are present at the same quantity in 
all cells), whereas the size factor for the endogenous 
mRNAs normalizes for relative differences in cell size.

This twofold normalization means that the normal-
ized spike-ins (which are adjusted for library size) can 
be used to estimate the degree of technical variability 
across the whole dynamic range of expression (see 
below). As mentioned above, the ratio of these two size 
factors can be used to estimate the total mRNA content 
of each cell, which is an informative additional molecu-
lar readout that can be used in downstream analyses 
(FIG. 2b).

As discussed above, normalizing for transcript 
length is challenging with current scRNA-seq proto-
cols. In particular, although improvements have been 
made recently32, there is still a noticeable 3ʹ bias to sev-
eral scRNA-seq protocols, including the SMART-seq 
protocol used by the popular Fluidigm technology. As 
a result, normalizing for transcript length (for exam-
ple, by applying an FPKM-type approach) is potentially 
problematic because it may underestimate the expres-
sion of long transcripts and overestimate the expression 
of short transcripts. In summary, until protocols allow 
an unbiased sampling of reads from across the whole 
transcript length, using FPKMs to compare the expres-
sion of transcripts with different lengths must be done 
with caution.

Normalization of scRNA-seq data with UMIs. When 
UMIs are used, and assuming that the sample is 
sequenced to saturation (that is, the user has sequenced 

the library to a sufficient depth to ensure that each 
cDNA molecule is observed at least once), the number 
of UMIs linked to each gene is a direct measure of the 
number of cDNA molecules associated with that gene. 
Therefore, it is tempting to use these raw molecular 
counts — which, unlike expression estimates from 
non-UMI protocols, are independent of amplification 
biases — in all downstream analyses. However, despite 
this advantage of UMI-based protocols, technical 
sources of expression variability between cells cannot 
be fully excluded. Differences in the efficiency of the 
reverse transcription reaction between cells, as well 
as other cell-specific technical effects independent of  
amplification, mean that differences in the number  
of UMIs associated with each gene can vary between 
cells for technical rather than biological reasons.

One strongly recommended approach that can help 
to overcome this problem, as for non-UMI-based pro-
tocols, is to add extrinsic spike-in molecules to the cell 
extract before reverse transcription and amplification 
(FIG. 2c). As the number of mRNA spike-in molecules 
is theoretically the same across cells, systematic vari-
ability in the number of UMIs associated with spike-in 
genes across cells is indicative of differences in reaction 
efficiency (that is, technical variability). Consequently, 
a normalization step can be applied to convert the 
number of cDNA molecules associated with a gene to 
the number of mRNA molecules.

Furthermore, if the goal is to compare relative dif-
ferences in expression, rather than absolute differences 
(for example, differences can arise in the total number 
of molecules depending on the stage of the cell cycle at 
which a cell is captured, or as a result of random fluctua-
tions in the total RNA content within a cell), an addi-
tional normalization step can be applied, similar to that 
proposed for non-UMI-based scRNA-seq data. Finally, 
as UMI-based scRNA-seq protocols currently sequence 
only a fragment of each molecule (from either the 5ʹ or 
the 3ʹ end of the transcript), correcting for transcript 
length during normalization is unnecessary. One conse-
quence of this tag-based protocol is that UMIs cannot be 
used to study isoform usage or allele-specific expression.  
However, UMI-based approaches are useful for obtain-
ing accurate quantification of the expressed set of 
molecules within a cell, which can then be used for 
downstream analyses, such as cell type identification 
and characterization.

Estimating technical variability. Once normalized gene 
expression levels or molecular counts have been gener-
ated, it is important to incorporate technical variability 
estimates. This applies to any downstream analysis but 
is particularly important when comparing expression 
levels between cells or when assessing the variability of 
individual genes (see below). Because of the typically 
low capture efficiency of current scRNA-seq protocols, 
even moderately expressed genes are frequently unde-
tected. Consequently, methods to accurately estimate 
the extent of this technical variability are crucial in 
order to differentiate between genuine gene expression 
changes and experimental artefacts33,55 (FIG. 2b,c).

REVIEWS

138 | MARCH 2015 | VOLUME 16  www.nature.com/reviews/genetics

© 2015 Macmillan Publishers Limited. All rights reserved



Confounding factors
Unobserved covariates  
that affect gene expression 
levels and that can obscure 
the interpretation if not 
accounted for.

Batch effects
Systematic differences in gene 
expression levels between 
independent cells from the 
same population, which  
arise as a result of sample 
preparation.

Biological replicates
Independent replicates from 
the same population.

Other confounding factors. Depending on the biologi-
cal question of interest, other confounding factors may 
also have to be accounted for. Perhaps the most obvious 
confounding factor is batch effects. Unlike conventional 
RNA-seq experiments, batch variation is much more 
difficult to address at the experimental design stage 
(BOX 1). In a bulk RNA-seq experiment, the expression 
of genes in two or more conditions (for example, pre- 
and post-stimulation) is typically of interest. Assuming 
that there are multiple biological replicates per condition, 
the libraries for RNA-seq can be prepared in parallel and 
randomized among lanes and flow cells, both of which 
mitigate against batch effects12. By contrast, in scRNA-
seq, cells from one condition are typically captured and 
prepared for sequencing independently from cells in a 
second condition.

Consequently, batch effects may be confounded with 
the biological covariate of interest (for example, condi-
tion) and are thus difficult to remove using regression 
analysis even with the presence of extrinsic spike-in mol-
ecules. One way to overcome this problem is to increase 
the number of biological replicates. As it is currently 
challenging to capture cells from multiple conditions 
(for example, pre- and post-stimulation) in parallel, an 
alternative is to independently repeat the experiment 
multiple times (that is, run multiple replicates of cells 
in the same condition), thus facilitating estimation of 

the technical variability; this will probably be necessary 
irrespective of the experimental technique used to cap-
ture the cells. In the context of microfluidics or micro-
well plate experiments, this corresponds to isolating and 
processing samples of single cells multiple times using 
independent microfluidic chips or microwell plates in 
order to properly model such effects.

In addition to technical factors such as batch effects, 
there may be other biological factors that lead to corre-
lated changes in gene expression between cells, thereby 
obscuring the biological signal of interest. For example, 
in differentiating populations of cells, such cell-to-cell 
heterogeneity in gene expression can be caused by dif-
ferences in the stage of the cell cycle at which a cell is 
captured (FIG. 3a). Although some of this variability may 
be accounted for by adjusting for cell size during the  
normalization, this will probably not capture all of  
the underlying variability. Moreover, there may be other 
latent (that is, hidden) variables that lead to heterogene-
ity in expression (including those related to core cellular 
processes or apoptosis). In the context of gene expres-
sion studies on bulk cell populations, approaches such as 
PCA56, surrogate variable analyses57, probabilistic estima-
tion of expression residuals58,59 or removal of unwanted 
variation60 have been used to account for such latent fac-
tors. Many of these methods can, in principle, also be 
applied to scRNA-seq studies. As for bulk-based stud-
ies, it is important to check whether the latent variables 
identified correspond to the biological process of inter-
est or whether they can be treated as confounders. Once 
these factors have been identified and their interpretation 
established, the data can be corrected to remove the effect 
of such confounding variables (FIG. 3b). For example, in a 
recent study61, a latent-variable model based on Gaussian 
processes was used to account for confounding variation 
due to the cell cycle in scRNA-seq data sets. This method 
modelled and then used linear regression to remove vari-
ability in gene expression across cells that is attributable 
to cell cycle phase, thus allowing other biological compo-
nents (for example, a differentiation process) to emerge 
more clearly from the data.

Obtaining biological insights
We now return to the three specific biological ques-
tions for which scRNA-seq can provide insights that are 
not obtainable via bulk, ensemble-based RNA-seq. In 
all three cases we assume that the input is a matrix of 
gene expression counts that have been normalized and 
that have had confounding variables removed using the 
approaches described above.

Identification of cell type and cellular state. A major 
and popular application of single-cell transcriptomics 
is to characterize a sample in terms of the known and 
novel cell types it contains17,30,61–65. Previous studies have 
shown that tissues can be clustered by their bulk expres-
sion profiles3. For example, when examining expression 
patterns in multiple tissue samples obtained from dif-
ferent primates, clustering analyses have been used to 
show that samples separate first by tissue and only then 
by species2.

Box 1 | scRNA-seq experimental design considerations

The most obvious experimental design questions related to single-cell RNA 
sequencing (scRNA-seq) experiments are the number of cells that need to  
be sequenced and the depth to which each individual cell should be sequenced. 
Both of these questions depend, inevitably, on the biological problem of interest, as 
well as on technical and financial constraints.

As a general rule, it is necessary to generate data from hundreds of cells to identify 
and characterize subpopulations of cells (especially rare populations) or to study the 
kinetics of transcription. Of course, if the goal is to answer specific questions 
relating to a small population of cells (for example, cells from the early developing 
embryo), such restrictions may not apply.

Recent studies using ~102–103 cells30,36,62,65 have discovered previously 
uncharacterized transcriptional states, corresponding to new cell types or novel 
positions along differentiation cascades in various experimental systems. However, 
there are substantial differences in the depth to which the transcriptome of each 
individual cell was sequenced. Jaitin et al.30 generated an average of 22,000 aligned 
sequence reads from 1,536 cells. By contrast, Mahata et al.65 generated 12–20 
million sequence reads from each of 93 cells. The key factor when determining the 
required sequencing depth is the number of reads that is necessary to sequence 
each reverse-transcribed and amplified cDNA molecule (or fragment thereof, if the 
protocol used does not involve unique molecular identifiers (UMIs)) at least once. 
When this depth is reached, further sequencing will not yield additional 
information. This value will depend on capture efficiency, with a higher capture 
efficiency meaning that deeper sequencing is necessary to fully capture the 
complexity of the captured transcriptome. However, this increased ability to fully 
characterize the transcriptome of a cell directly from deep scRNA-seq data is 
compensated for by the fact that fewer cells are typically able to be analysed by 
deep scRNA-seq than for shallow scRNA-seq; therefore, it may be that fewer cell 
types can be confidently identified when using deep scRNA-seq coupled with a 
small input population of cells.

Therefore, a balance between these two experimental parameters must be 
achieved. However, given the insights already obtained from relatively small 
numbers of cells, sequencing on the order of hundreds of cells at moderate depth 
would seem to suffice for many applications.

REVIEWS

NATURE REVIEWS | GENETICS  VOLUME 16 | MARCH 2015 | 139

© 2015 Macmillan Publishers Limited. All rights reserved



Markov random field
(MRF). A particular class of 
statistical model that can 
exploit smoothness of 
measurements in a spatial  
grid, thereby improving the 
accuracy of parameter 
estimates.

Dropout
The false quantification of a 
gene as ‘unexpressed’ due to 
the corresponding transcript 
being ‘missed’ during the 
reverse-transcription step. This 
leads to a lack of detection 
during sequencing.

scRNA-seq can be used to address hidden tissue 
heterogeneity: by clustering cells on the basis of their 
expression profiles, distinct subsets — potentially cor-
responding to unknown cell types — can be identified. 
The putative cell types can be characterized by studying 
the functions of the genes that best distinguish them. 
Additionally, these approaches can provide insights into 
differentiation: if a population of cells at different stages 
of differentiation into a specific cell type are processed 
in parallel, it is possible to map these cells onto a specific 
point in the differentiation cascade. One method would 
be to use unsupervised clustering-based approaches, 
which do not rely on known marker genes62,66.

Methods for clustering cells can be split into two 
groups depending on whether there is established infor-
mation or an expectation regarding the relationship 
between the cells. If there is no prior expectation, unbi-
ased clustering methods — such as hierarchical cluster-
ing or PCA-like methods — can be applied to group 
cells according to their position along the differentia-
tion cascade66. If prior information is available, PCA-
like approaches can be combined with knowledge of the 
expression patterns of a small set of known marker genes, 
allowing an approximate spatial map of the tissue under 
study to be obtained63. Accounting for confounding  
variables can be useful in this context61 (FIG. 4).

If the spatial location of a cell is known67,68, in some 
tissues it can be reasonable to hypothesize that cells 
located closer to one another are more likely to belong 
to the same type than more distant cells. To this end, 
methods to cluster cells using both spatial and quantita-
tive information via a Markov random field (MRF)-based 
approach show promise69.

In addition to cell type identification, unsupervised 
methods such as PCA can also be used to explore cel-
lular state, for example, stage or speed of the cell cycle. 
Perhaps counter-intuitively, slow-cycling cells tend to 
have clearer transcriptional signatures of G1/S versus 
G2/M stages, whereas fast-cycling cells tend to be more 
homogeneous with respect to expression of cell cycle 
genes. A recent study of single cells obtained from glio-
blastomas describes a computational strategy for quanti-
fying the speed of the cell cycle in each cell by comparing 
expression levels of G1/S versus G2/M genes35.

Differential expression and transcript isoforms. Having 
partitioned cells into different clusters using compu-
tational approaches as outlined above or, alternatively, 
using cell-surface markers, one key objective is to define 
the sets of genes that best discriminate the different 
clusters.

Perhaps the most obvious way to address this 
problem is by identifying genes that are differentially 
expressed between pairs of clusters. For example, by 
using such a strategy, a recent study discovered that 
when dendritic cells are challenged by pathogenic 
stimuli, a set of antiviral genes is upregulated in only 
a small subset of cells immediately post-stimulation; 
this set of genes is upregulated in all cells at later time 
points36. From a computational perspective, approaches 
based on standard differential expression tools for bulk 

RNA-seq can be used50,70,71. Although scRNA-seq data 
measurements are typically noisier than those gener-
ated by bulk RNA-seq28, this is compensated for, at least 
to some extent, by noting that the number of cells per 
study group in scRNA-seq is typically much greater 
than the number of samples per group in a bulk RNA-
seq study. Recently, an alternative approach designed 
specifically for scRNA-seq data has been described55, 
which explicitly accounts for technical variation due to 
allelic dropout.

Another way of characterizing the putative clusters is 
to identify transcripts that display differences in isoform 
usage72. As in studies of differential expression, tools for 
identifying differentially expressed exons73,74 can be 
applied in this case. One potential limitation is the 3ʹ bias 
in expression noted above, which will affect the power to 
identify differential isoform usage. Finally, differences in 
transcription start sites, which can be straightforwardly 
identified if a 5ʹ UMI protocol is used, can also be used 
to characterize different clusters of cells.

Identifying highly variable genes. In parallel to dif-
ferential expression analysis, an important challenge 
is to identify the genes with the most highly variable 
expression patterns across a population of cells with-
out prior knowledge of the underlying cell types. Gene 
expression variability can provide clues regarding 
transcriptional heterogeneity in the sample of interest, 
giving insights into the robustness of gene expression 
regulation between cells, as well as cell type charac-
terization. The identification of highly variable genes 
requires the application of statistical approaches that 
account for technical sources of variation, such that 
biological variability in gene expression levels can be 

Figure 3 | Confounding variables and how to account 
for them. a | For each gene, the observed expression 
profile generated from single-cell RNA sequencing 
(scRNA-seq) is caused by a combination of factors. For 
example, if cells are being sampled randomly from a mixed 
population containing naive (that is, undifferentiated) cells 
and cells that are closer to being fully differentiated, then 
for each cell, the expression profile is a combination of a 
variety of factors (including position on the differentiation 
cascade, cell cycle state and apoptotic state). Factors such 
as the cell cycle or apoptotic state can be considered 
confounders that prevent the signal of interest (the 
differentiation state of a cell) from being uncovered.  
b | Confounding factors need to be identified and 
corrected for in downstream analyses. Latent-variable 
models, which are built on approaches applied in bulk 
RNA-seq studies to infer and correct for hidden factors 
that cause gene expression heterogeneity56,57,59, can be 
used to deduce the correlation between cells due to 
factors such as the cell cycle or apoptotic state. 
Subsequently, the extent of variance in the expression of 
each gene across cells that is attributable to this factor 
(and other factors) can be inferred. Additionally, the 
scRNA-seq data can be corrected by using regression 
analyses to remove the confounding factor, thus facilitating 
downstream analyses such as clustering or network 
analyses. Figure from REF. 61, Nature Publishing Group.
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quantified. In addition, it is important to realize that 
high variability of gene expression can also be caused 
by a confounding factor that is not accounted for, such 
as the cell cycle (FIG. 3).

One approach is to compute the coefficient of vari-
ation (that is, the empirical variance divided by the 
squared mean) for each gene across the population of 
cells under study and to rank the genes accordingly. 
Unfortunately, technical variability, which is intrinsic to 
the experimental protocol and not associated with genu-
ine biological variability, is greater for lowly expressed 
genes than for highly expressed genes72. Consequently, a 
null estimate of the expected technical variability needs 
to be computed. This can be done using the extrinsic 
spike-in molecules — the extent of variability in their 
expression across cells can be used as an estimate of the 
null variance. This information allows the expected tech-
nical variation to be modelled across the whole dynamic 
range of expression, which forms the basis of a statistical 
test to determine the set of genes that show more vari-
ability in expression than would be expected by chance33. 
Recently, extrinsic spike-in molecules have been used to 
further decompose technical variability into two terms 
that correspond to sampling noise and heterogeneity in 
sequencing efficiency across cells75.

Regulatory networks and their robustness. One impor-
tant and widespread application of bulk RNA-seq studies 
has been the identification of co-regulated modules of 
genes and gene regulatory networks. Typically, RNA-seq 
is applied to measure mRNA expression levels across a 
compendium of samples corresponding to, for exam-
ple, multiple individuals. From these data the sample 
gene–gene covariance matrix can be computed, which 
forms the basis of a large number of network reconstruc-
tion methods76. Pairs of genes with highly correlated 
expression levels across samples are then assumed to be 
co-regulated.

To improve the robustness of the inference of 
co-regulation, methods that group genes into regulatory 
modules77 or that account for unmeasured regulators78 
have been considered. Networks inferred using such an 
approach are typically undirected; that is, it is unknown 
which gene is upstream in the regulatory cascade79. To 
ascertain directionality, measurements of gene expres-
sion levels in perturbed conditions (for example, upon 
knockdown of a given gene of interest) are typically 
necessary80.

In the context of scRNA-seq, one can, in principle, 
replace samples with cells before performing an analysis 
very similar to that described for bulk data to identify 
co-regulated genes. Importantly, the inferred gene–gene 
correlation network will depend on the cell heterogene-
ity in the sample. For example, single cells derived from 
a heterogeneous sample composed of several cell types 
are unlikely to yield the same network as those derived 
from one of the constitutive cell types. Thus, combining 
gene regulatory network inference with cell type iden-
tification as an initial step may be important. Despite 
these pitfalls, there are already promising applications 
of co-expression analysis in scRNA-seq data65.
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Monoallelic expression
The expression of only one of 
the two parental alleles.

Assuming that the technical challenges can be over-
come, it is important to realize that the regulatory net-
works derived from scRNA-seq data can provide insights 
that are not easily obtainable from bulk RNA-seq data 
networks. For example, if a set of genes can be activated 
independently by two transcription factors and only 
one of these two factors is expressed in any given cell, 
then when constructing a network from bulk RNA-seq 
data, these two factors might seem to be co-expressed, 
or it might seem as if one regulates the other. By con-
trast, from the scRNA-seq data, it would be clear that 
these genes are never co-expressed, thus providing 
important insights into mutually exclusive regulatory 
mechanisms that activate the same set of downstream 
genes. However, scRNA-seq data may also reveal less 
biologically meaningful correlations between genes. For 
example, if some cells are in G1 phase while others are 
in G2 phase of the cell cycle, this can cause widespread 
correlations between large sets of genes. Thus, depend-
ing on the aims of a particular gene network analysis, it 
may be important to remove confounding factors such 
as the cell cycle.

Stochasticity of transcription. One important applica-
tion of scRNA-seq is the study of the kinetics of gene 
expression: unlike the population-averaged data from 
RNA-seq on bulk cell samples, scRNA-seq can char-
acterize diversity in transcription between individual 
cells4,81.

Previous experimental approaches, such as time-
lapse microscopy studies24,82, have labelled individual 
genes and then tracked their expression over time, 
which has allowed estimation of the rate per unit time 
at which a gene transitions from the off state to the on 
state and vice versa, along with the rates per unit time 
of gene transcription and mRNA decay24,28,82,83. These 
four kinetic parameters can then be used to study 

transcriptional bursting, which defines the expression 
profile of the gene under study. Transcriptional burst-
ing is characterized by two quantities: the burst size, 
which describes the average number of mRNA mole-
cules synthesized when a gene is in the active state; and 
the burst frequency, which is the number of bursts per 
unit time82. However, studies of transcriptional burst-
ing using approaches such as time-lapse microscopy 
can typically be applied to only a small number of genes 
at any one time.

By contrast, scRNA-seq facilitates expression pro-
filing of large numbers of genes across many individ-
ual cells81. However, as current scRNA-seq protocols  
require cells to be lysed before library preparation, the 
expression of a gene cannot be measured over time. 
Instead, for each gene, the distribution of expression 
levels across cells can be regarded as a sample from a sta-
tionary distribution generated using time-indexed meas-
urements of the expression of that gene in a single cell 
(FIG. 5a). Subsequently, it is possible, independently for 
each gene, to use computational approaches to estimate 
the kinetic parameters81. However, as these parameters 
are measured in units of time and we observe only the 
stationary distribution, the rate of decay is typically set 
to one, which makes the kinetic parameters independ-
ent of time19,84. This is a strong assumption, as the rate 
of transcript degradation is known not to be constant 
across genes85; therefore, the inferred parameters must 
be interpreted with this caveat in mind. One additional 
obstacle that needs to be overcome is the incorporation 
of technical variability into the procedure for estimating 
the kinetic parameters.

Using allele-specific expression to study the regula-
tion of gene expression. One interesting application of 
scRNA-seq is to study allele-specific expression, includ-
ing random monoallelic expression. Like bulk RNA-seq 
studies86, allele-specific expression can be measured 
and used to determine the extent of allelic bias in 
gene expression4 (FIG. 5b). By exploring the degree of 
allele-specific expression, stochastic transcription  
of each allele and the degree of co-ordination of expres-
sion between alleles can be investigated. For example, 
scRNA-seq has been used to study stochastic allelic 
expression during early embryogenesis4. Specifically, 
using first-generation intercrosses between two dif-
ferent inbred strains of mice, the extent of stochastic 
allele-specific expression during early embryogenesis 
has been quantified transcriptome-wide.

One concern with using scRNA-seq to study ran-
dom monoallelic expression is that allelic dropout 
during library preparation might lead to erroneous 
measurements of monoallelic expression. Previous 
approaches have addressed this by splitting cell lysates 
into two and then repeating the experiment to provide a 
background estimate of allelic dropout4. However, this 
is an area in which more work is required to develop 
computational methods that can accurately model 
this feature of scRNA-seq library preparation, such 
that accurate measures of allele-specific expression  
can be obtained.
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Figure 4 | Finding new cell types and allocating cells along a differentiation 
cascade. Unbiased clustering approaches based on principal component analysis 
(PCA)-like methods62,63,66 can be used on a mixed population of cells, to either map 
them along a differentiation cascade or cluster them into new cell types55,58. 
Subsequently, the newly identified cascades or populations can be characterized, and 
new marker genes can be found by identifying genes or transcript isoforms that are 
differentially expressed between the populations.
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Conclusions and perspectives
Recent progress in the development of experimen-
tal methods for scRNA-seq has been rapid and excit-
ing, with a plethora of unexpected and profound new 
insights emerging in a short period of time. These 
include the identification of new cell types, identifica-
tion of gene expression patterns that are predictive of cel-
lular state, and opportunities for studying the functional 
implications of stochastic transcription. These results are 
built on the solid foundations of computational meth-
ods that have been developed for sequencing of bulk cell  
populations, which have proved extremely powerful.

However, to ensure that scRNA-seq data can be 
properly analysed, it is crucial to develop computational 
methods that are tailored specifically for processing 

single-cell data and that keep pace with advances in 
experimental techniques. New methods have already 
been, and continue to be, developed for normalization 
and cell type identification, which focus more heavily 
on dissecting variability in expression levels across cells. 
Additionally, there are numerous areas in which new 
tools remain to be developed.

First, normalization of scRNA-seq data must prop-
erly account for differences in the total amount of RNA 
transcribed within a cell and, for non-UMI-based 
protocols, differences in sequencing depth. Second, 
methods for modelling confounding variables and/or 
using regression-based analysis to remove them will be 
required if the biologically relevant signal in scRNA-seq 
data sets is to be robustly uncovered. Third, accurately 

A
A
G
G
G
G

R
ea

ds

SNP [A/ G )

Reads:
A allele

0 50 100 150 200

Expression of allele 1Exonic SNPs allow assessment 
of allele-specific expression

Ex
pr

es
si

on
 o

f a
lle

le
 2

+dentification of
monoallelically
expressed genes

Kinetics of transcription
•|Rates of transition to
 active and inactive states
•|1verall rate of transcription

a

b

Reads:
G allele

Nature Reviews | Genetics

scRNA-seqPulse microscopy

150

100

50

0
0 20 40 60 80 100

Time (seconds)
Frequency

0

50

100

150

200

0

20

40

60

m
R

N
A

 n
um

be
r

m
R

N
A

 n
um

be
r

Figure 5 | The kinetics of transcription. a | Single-cell RNA sequencing (scRNA-seq) can be used to study the kinetics 
of transcription. RNA labelling followed by pulse microscopy (left panel) can be used to track the expression of a gene 
over time82. scRNA-seq can be used to obtain an instantaneous snapshot of this distribution by measuring the 
expression of an individual gene across many cells (middle panel)81. Subsequently, these data can be used to draw 
inferences about the kinetics of transcription. b | Allele-specific expression can be studied using scRNA-seq. 
Allele-specific expression can be assayed using single-nucleotide polymorphisms (SNPs) in the sequence of a transcript 
to allocate reads to alternative alleles. Subsequently, the number of cells in which both alleles are expressed and the 
numbers of cells in which allele 1 or allele 2 is exclusively expressed can be counted. This allows the identification of 
genes that display evidence of monoallelic expression4. One important challenge is to address technical issues, 
especially allelic dropout during sample preparation, which can bias the results.
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