
 1997 Oxford University Press4570–4580 Nucleic Acids Research, 1997, Vol. 25, No. 22

RAGA: RNA sequence alignment by genetic algorithm
Cédric Notredame 1,*, Emmet A. O’Brien 1,2 and Desmond G. Higgins 1,2

1EMBL Outstation–The European Bioinformatics Institute, Welcome Trust Genome Campus, Hinxton, Cambridge
CB10 1SD, UK and 2Department of Biochemistry, University College, Cork, Ireland

Received July 23, 1997; Revised and Accepted October 1, 1997

ABSTRACT

We describe a new approach for accurately aligning
two homologous RNA sequences when the secondary
structure of one of them is known. To do so we
developed two software packages, called RAGA and
PRAGA, which use a genetic algorithm approach to
optimize the alignments. RAGA is mainly an extension
of SAGA, an earlier package for multiple protein
sequence alignment. In PRAGA several genetic
algorithms run in parallel and exchange individual
solutions. This method allows us to optimize an
objective function that describes the quality of a RNA
pairwise alignment, taking into account both primary
and secondary structure, including pseudoknots. We
report results obtained using PRAGA on nine test
cases of pairs of eukaryotic small subunit rRNA
sequence (nuclear and mitochondrial).

INTRODUCTION

Most methods of alignment are based on the primary structure of the
sequences to be analysed (1). Alignment may be straightforward
when the primary structure is conserved but becomes less and less
accurate as the evolutionary distance increases. In the case of RNA
it may be possible to use secondary structure information to
supplement the weak primary structure information. Such
alignments, using primary and secondary constraints, have been
built for rRNAs (2,3). Their construction is at least partially
manual and is usually based on identification of sets of correlated
mutations which suggest secondary structure interactions.

One justification for such methods is the fact that accurate
alignment is still the main non-experimental way to establish a
reliable secondary structure for a long RNA molecule. The only
other alternative is ab initio prediction. Several techniques of this
type have been developed over time (4,5), but they recently
received renewed attention through the use of stochastic
heuristic-based approaches, like simulated annealing (6,7) and
genetic algorithms (8,9). Nevertheless, they remain limited by the
fact that our understanding of the in vivo folding process is still
incomplete. In contrast, homology analysis based on alignments
does not have these limitations. Multiple alignments reveal the
positions of the sequences on which some constraints exist,
regardless of the actual cause of these constraints. Several
algorithms have been developed for aligning RNA sequences

taking into account primary and secondary information. Some
methods attempt to simultaneously align and fold sequences
(10–12). Their main drawback is that they remain limited to sets
of short sequences (<200 nt long).

To reduce the complexity of this problem it is also possible to
align a sequence (or a set of sequences) of unknown structure to
some pre-established reference master structure. Such alignments
include non-local interactions and their solution has been shown
to be NP hard (13). Nevertheless, for small sequences sensible
results can be obtained. Several methods of this type, based on the
use of stochastic context free grammar (SCFG) for the description
of RNA non-pseudoknotted secondary structure, have been
described (11,14,15). Pseudoknots, however, are important
motifs in RNA folding (16) and recently some new results have
been obtained on this aspect of RNA analysis. This includes the
work of Tabaska and Stormo (17) for aligning an RNA sequence
to a pseudoknotted structure in polynomial time. Unfortunately,
all these methods have the limitation of being computationally
very expensive and therefore remain restricted to small sequences
(<200 nt long).

This problem can be partially overcome by heuristic methods.
Corpet and Michot have described an approach of this type (18).
In this case a heuristic allows identification of the portions of an
alignment that can be made without using secondary structure
information. The remaining portions, if they are small enough,
can then be aligned using non-local interactions. This is done with
a specialized dynamic programming algorithm. Although this
algorithm is less efficient than that described for SCFG-based
alignments, the heuristic filtering makes it possible, in some
cases, to align long RNA molecules (e.g. >1500 nt). At the
moment this is largely beyond the scope of any SCFG-based
algorithm. Unfortunately, the algorithm cannot deal with very
divergent sequences and does not support the computation of
pseudoknots. As opposed to the SCFG-based scoring scheme, that
used by Corpet and Michot has no real theoretical justification.
Nevertheless, it has the merit of being conceptually simple as well
as leading to computation of sensible alignments (as judged by
comparison with established reference alignments) (18).

For this reason we took the overall approach and scoring
scheme of Corpet and Michot but used a genetic algorithm (GA)
to carry out the optimization. This has two significant advantages.
Firstly, in the GA context there is no difference between the
handling of pseudoknots and any other secondary structure.
Secondly, it is possible to attempt to find alignments between
much longer sequences, such as complete small subunit rRNAs,

*To whom correspondence should be addressed. Tel: +44 1223 494449; Fax: +44 1223 494468; Email: cedric.notredame@ebi.ac.uk

4571

Nucleic Acids Research, 1994, Vol. 22, No. 1Nucleic Acids Research, 1997, Vol. 25, No. 224571

which can be >2000 nt in length. The genetic algorithms (GA)
(19,20), like simulated annealing (21) or Gibbs sampling (22), is
a stochastic optimization technique. It involves an attempt at
optimizing some cost function (objective function, OF) by
modifying and combining a population of solutions (individuals).
GAs do not guarantee an optimal solution, but are known to
perform well with combinatorial or enumeration problems.

We based our approach directly on a previous package, SAGA
(Sequence Alignment by Genetic Algorithm) (23). This
algorithm was improved and parallelized. A suitable cost function
that describes the quality of a RNA alignment was introduced,
mostly based on the function described by Corpet and Michot
(18). The package was name PRAGA for Parallel RNA
Alignment by Genetic Algorithm. We compared this algorithm
with traditional techniques of sequence alignment and, to some
extent, with the program RNAlign (18).

METHODS

The aim is to align two related sequences of RNA, knowing the
secondary structure (master structure) of one of them (master
sequence), in order to predict the position of these structural
elements in the second sequence (slave sequence). In the correct
alignment elements of the two sequences sharing the same
structure and/or sequence should be aligned (Fig. 1a–c). A
measure (OF) can be designed that allows evaluation of the
quality of such an alignment. This measure takes into account the
quality of the sequence alignment and the stability of the folding
induced by the master sequence onto the slave sequence. To
produce the best scoring alignment according to this measure we
used a GA. We also describe a parallel GA that we have designed
to gain some speed over a serial one. The results obtained with
several sets of sequences were compared with established
reference alignments of the same sequences, using three
comparison methods.

Objective function

The function we use was described by Corpet and Michot (18).
We implemented it in RAGA without any modification. It
combines three different scores: Pr, the primary score; Se, the
secondary score; a gap penalty score. The overall score is a
combination of these three values. The higher this score, the better
the alignment between the two sequences.

Pr is a function of the aligned pairs of residues in the alignment.
It depends on a matrix where each possible pair of residues is
given a score. In the case of RNA a simple identity matrix is used
with a mismatch score of 0 and a match score of 1. All positions
containing a gap are ignored at this point. Pr is therefore equal to
the number of matches in the pairwise alignment.

Se is based on the secondary structure. It evaluates the stability
of the folding induced by the master onto the slave sequence. If
two nucleotides form a base pair (part of a stem) in the master,
then the two nucleotides in the slave sequence aligned with them
should be able to form a Watson–Crick base pair as well if the
secondary structure is conserved. Since pairings are relatively
well defined in RNA, it is possible to assign a score to the pairing
potential of the sequence of unknown structure. This can be
formalized as follows. Given two sequences A (master) and B
(slave) with (Ai,Aj) being two nucleotides of A and (Bk,Bn) the
equivalent aligned nucleotides of B, if Ai and Aj are known to be

Figure 1. RNA alignment. (a) Master sequence with a known secondary
structure. (b) Alignment of the master sequence with a slave sequence of
unknown structure using primary (Pr score) and secondary structure (Se score)
information. (c) Prediction of the structural elements of the slave sequence
shared with the master sequence.

a

b

c

paired, Ai is aligned with Bk and Aj with Bn then the score Se is
equal to the pairing score of Bk with Bn. In practice, a very
simplified model was used to assign pairing scores, giving 2 for
GC pairs and 1 for UA and UG pairs (UG is not a conventional
Watson–Crick base pair but stems in RNA frequently contain UG
pairs) or any other interaction involving one of the wildcards X
or N. The other pairs are given a score of 0. Se is the sum of the
scores associated with each pair in the structure of B induced by
the structure of A.

It is usually necessary to insert gaps into one or both sequences
in order to perform the alignment. These gaps represent insertion
or deletion events that have occurred over time in both sequences.
They may not occur completely at random and may happen more
frequently in loops or in non-structured domains. In order to
reflect this in the OF, two position-specific gap penalties are used
following the model of Corpet and Michot (18): GOS, a penalty
for opening a gap between two stacked pairs; GO, a penalty for
opening a gap in non-structured regions.

A third penalty (GEP) is used to penalize gap length. It is
calculated as GEP × length of gap. Terminal gaps are not
penalized. We use the values proposed by Corpet and Michot with
GO = 5, GOS = 8, GEP = 0.3. The total gap penalty of an
alignment is equal to:

gap penalty = (a × GOS) + (b × GO) + (c × GEP) 1

Where a is the number of gaps between stacked pairs in stems, b
is the number of other non-terminal gaps and c is the total length
of all the non-terminal gaps. The complete alignment score is
calculated using a new parameter λ, which is always a positive
value.

alignment score = Pr + (λ × Se) – gap penalty 2

Nucleic Acids Research, 1997, Vol. 25, No. 224572

The parameter λ has the effect of balancing the contribution from
primary structure information and from secondary structure.

Optimization of the objective function

The function in equation 2 was shown to be a good indicator of the
quality of an alignment (18). The main drawback is that its
optimization is difficult when λ is given a value other than 0. In the
case of λ = 0 the contribution of secondary structure to the
alignment is ignored. Such a function can be optimized by regular
dynamic programming with local gap penalties (1,24). However,
when λ is not zero optimization becomes much harder. A variation
of dynamic programming has been described. It requires O(M2N2)
space and O(M2N3) time (18), M and N being the lengths of the
sequences or profiles to align. Such a high complexity makes it
hard to apply this algorithm to anything other than small sequences
or fragments of alignments. Another limitation of this approach is
that it cannot easily deal with pseudoknots. In order to overcome
these two problems we used a GA.

RAGA is derived from the Simple Genetic Algorithm described
by Goldberg (20). It involves using a population of solutions which
evolve by means of natural selection. The population we consider
is made of pairwise alignments. Initially a generation zero (G0) is
created (initialization). In this population each individual consists
of one possible alignment for the sequences to be aligned. The size
of this population is kept constant. To go from one generation to
the next, children are derived from parents that are chosen by some
kind of ‘natural selection’, based on their fitness as measured by
OF (i.e. the better the parent, the more children it will have). To
create a child an operator is selected that can be a crossover (mixing
the contents of the two parents) or a mutation (modifying a single
parent). There are several types of mutations, modifying the
alignments in different ways. Each of these has a probability of
being chosen that is dynamically optimized during the run
(dynamic scheduling).

These steps are repeated iteratively, generation after generation
(evaluation/breeding). During these cycles new pieces of
alignment appear because of the mutations and are combined by
the crossovers. This selection makes sure that good pieces survive
and dynamic setting of the operators helps the population to
improve by creating the children it needs. Following this simple
process the average fitness of the population increases until no
more improvement can be made. The best alignment obtained in
this way is taken as a result.

Initialization. The first step of the algorithm is initialization,
during which a population of solutions is created (seeding). The
two desirable properties of an initial population are to have as
much diversity as possible and to contain as many good scoring
blocks as possible (i.e. individuals as good as possible). Seeding
in a random manner allows one to have high diversity, but very
few good scoring blocks. Such a population will usually improve
slowly. On the other hand, seeding with greedy methods
[e.g. ClustalW (25) and other alignment software] gives a
population with a better initial score at the cost of lower diversity.
Such a population usually improves very quickly, but tends to get
stuck into a local minimum close to the starting point.

In RAGA we tried to find a good trade-off between these two
extremes. A variation on dynamic programming described by
Gerstein (26) was used to produce our initial alignments. This
method (Dynamic Programming with Added Noise, DPAN in
this paper) allows addition of a random amount of noise to the

regular dynamic programming method (27,28), therefore
producing sub-optimal alignments centred around the
mathematical optimum obtained by dynamic programming
without noise. In practice, when two sequences are aligned
several times with DPAN long stretches of conserved residues
tend to be kept intact, while diversity accumulates in less stable
regions of the alignment. It is possible to control the overall
amount of noise added. In RAGA this noise was tuned so that the
average score of the alignments used for seeding would be the
same as the average score of a population of random alignments.
Even with such a bad initial average score, a population generated
in this way improves about three times faster than a completely
random population.

Evaluation/breeding/end. The rest of the GA procedures involved
in RAGA are taken directly from SAGA. Individuals are first
evaluated through the OF described earlier and then given an
expected offspring score that reflects their quality in comparison
with the rest of the individuals of the same generation. At each
generation half of the population (lowest scoring alignments) is
replaced by newly generated individuals (children). To produce
a child an operator is selected (mutation or crossover). In the case
of a mutation one parent is chosen to which the mutation is
applied to produce a modified alignment that is put back into the
population. In the case of a crossover the procedure is the same,
but two parents are used. Children are put back into the population
only when they are different from all the other children
(population without duplicates). The selection of a parent is made
by weighted wheel selection, a standard practice in GA: a virtual
wheel is spun where each individual has a number of slots
proportional to its expected offspring. Therefore the fittest are
more likely to be chosen as parents, while the weakest still have
a chance to survive.

Each operator has a probability of being used which varies
along the run, depending on how well it performed. This
automatic process is known as dynamic scheduling of the
operators and has been described in greater detail (19,23). When
no improvement has been made for a specified number of
generations (typically 100 generations on a run of 400 generations),
the GA is stopped.

The operators. According to the traditional nomenclature of
genetic algorithms (20) two types of operators are used in RAGA:
crossovers and mutations. In RAGA we do not make any
distinction between these two types with regard to how we apply
them. They are designed as independent programs that input one
or two alignments (the parents) and output one alignment (the
child). The difference in score between the input and output is
used for future evaluation of the usefulness of the operator. Each
operator requires one or more parameters which specify where
and how the operation is to be carried out. For instance, an
operator inserting a new gap must be told where (at which
position in the alignment) and in which sequences the gap is to be
inserted and how long this gap will be. The operators display
several levels of greediness. Some are completely stochastic
(i.e. the values of the parameter are determined randomly in some
reasonable range), while others aim at some local optimization
and rely on enumeration or DPAN.

The crossovers. These operators allow good pieces to be
recombined and therefore play a central role in improving the
population. In RAGA only one type of crosover is implemented:

4573

Nucleic Acids Research, 1994, Vol. 22, No. 1Nucleic Acids Research, 1997, Vol. 25, No. 224573

Figure 2. Layout of the parallel genetic algorithm PRAGA. Each circle
represents a RAGA process. The best individuals migrate from top to bottom.
The best solution is to be found in the root (bottom).

the uniform crossover (UCO) previously used in SAGA. The
principle is to map the areas of alignment which are consistent
(identical) between the two parents. The child will contain all
these identical blocks as well as non-identical blocks taken from
either of the parents. The choice of a non-consistent block can be
random or deterministic. Both versions (random and
deterministic) are implemented in RAGA.

Gap shifting. In order to keep improving the population it is
necessary to introduce new alignment configurations. This can be
done by shifting gaps. To do so a gap is randomly chosen in an
alignment and moved to another position. The choice of the new
position can be random or greedy, in which case the gap is slowly
shifted in one direction as long as the score of the alignment keeps
improving.

Gap insertion. This operation is made by DPAN as described
earlier. It is only performed on a portion of random size that is
extracted from the alignment, re-aligned and re-introduced.

Island parallelization. In order to decrease run times we
implemented an island parallelization model (20). Instead of
having a single copy of RAGA, several identically configured
GAs were used, running independently in parallel and
exchanging individuals every N generations, where N is typically
5. The algorithms are arranged on a k-branched tree and
population exchange only takes place in one direction, from the
leaves to the bottom of the tree (Fig. 2). By default the individuals
migrating from one RAGA to another are those having the best
score. They replace individuals with lower scores in the node to
which they move. The node from which they come keeps a copy,
so that in each RAGA process the population remains constant.

We found that this model gives results comparable with what
would be obtained with a single copy of RAGA having a

population equivalent to the overall population of all the GAs. By
default, after trial and error optimization, we used a three-
branched tree with a depth of three, as shown in Figure 2. This
model requires 13 GAs. The processes are synchronous and wait
for each other to reach the same generation number before
exchanging their populations. In terms of CPU time this
implementation can be ∼10 times faster than a single GA with the
same overall population. This means that we get ∼80% of the
maximum speed-up. A typical population size for each GA is 30
and population migration occurs every five generations. A GA
that receives new individuals (node) replaces half of its popula-
tion that way (15 individuals). These 15 individuals are made up
of three groups of five individuals coming from the previous
nodes/leaves. This parallel GA was named PRAGA for Parallel
RNA Alignment Genetic Algorithm. All of our results were
obtained using PRAGA.

Test cases

To assess the efficiency and accuracy of PRAGA several test
cases were designed. We used aligned rRNA sequences, obtained
from a manual expert alignment of small subunit (SSU)
sequences (29). This database contains large alignments of rRNA
made by hand. These alignments come with predicted secondary
structure. To build a test case two sequences were extracted from
a multiple alignment. This initial alignment was kept as a
reference. From the same alignment the structure (master
structure) of one of the two sequences (master sequence) was then
extracted. In this structure we kept only the elements documented
as belonging to the conserved core which is found in most SSU
rRNAs (30,31). These elements were chosen because they were
likely to exist in the second sequence (slave sequence).

We designed two large test cases (test cases 1 and 2 in Table 1)
using full-length eukaryotic nuclear sequences. These two sets
use the human SSU rRNA as a master sequence and Oxytrichia
nova and Giardia ardeae as slaves. These sequences are 65 and
75% identical respectively to the master human sequence. The
purpose of these two test cases is to show the ability of the GA to
optimize long alignments consisting of sequences of ∼2 kb in
length. In order to obtain test cases with a wider range of identity
between the master and the slave sequence we turned to the
mitochondrial SSU rRNA sequences. These sequences diverge
faster than their nuclear counterparts (32), have a wider spectrum
of identity and are also generally smaller (∼1–1.5 kb in length).
This allowed an extensive study of some of the properties of our
algorithm. This set of seven test cases (Table 1, test cases 3–9) was
created using the procedure already described. Sequences and
structures were extracted from the database alignment (29). We
used the human mitochondrial SSU rRNA as a master sequence
and seven other mitochondrial sequences as slaves. Their identity
with the human sequence ranges from 70 to 43%. Some of the
slave sequences do not contain all the structural elements
described in the core structure used for the alignment (Table 1,
pairs column). This gave us a chance to analyse the effect of this
type of noise on our optimization procedure.

The distances between the two sequences of a given test case were
measured using the program Dnadist in the package Phylip (33). We
used this program to assess the ‘Kimura with 2 parameters’ distance
(34), with a default ‘transition/transvertion’ ratio set to 2 and one
category of substitution rates.

Nucleic Acids Research, 1997, Vol. 25, No. 224574

Table 1. Test cases and general results

TC Master Slave Distance Pairs (%) Length λ m1 (%) m2 (residues) m3 (%)

DP PRAGA DP PRAGA DP PRAGA

1 Homo sapiens Oxytrichia nova 0.41 82.5 1914 1.00 83.9 86.6 0.15 0.06 85.3 94.7

2 Homo sapiens Giarda ardeae 0.57 82.1 1895 3.00 72.2 76.1 0.53 0.45 65.2 81.3

3 Homo sapiens
mitochondrion

Latimeria chalumnae
mitochondrion

0.31 81.2 998 1.00 85.9 92.5 0.64 0.10 82.6 96.1

4 Homo sapiens
mitochondrion

Xenopus laevis
mitochondrion

0.43 84.9 985 1.00 83.9 92.5 0.41 0.20 77.4 96.7

5 Homo sapiens
mitochondrion

Drosophila virilis
mitochondrion

0.76 82.6 973 3.00 66.8 76.6 2.08 1.59 48.6 68.5

6 Homo sapiens
mitochondrion

Apis mellifera
mitochondrion

1.23 72.1 977 4.00 45.2 56.0 3.83 2.91 24.1 55.1

7 Homo sapiens
mitochondrion

Penicillium
chrysogenum
mitochondrion

1.26 81.3 1478 4.00 37.7 63.8 4.96 3.21 15.7 77.0

8 Homo sapiens
mitochondrion

Chlamydomonas
reinhardtii
mitochondrion

1.30 66.6 1271 4.00 34.1 53.2 13.4 8.26 8.90 50.0

9 Homo sapiens
mitochondrion

Saccharomyces
cerevisiae
mitochondrion

1.33 80.3 1699 6.00 31.6 60.2 14.7 3.70 21.6 70.0

TC, test case number (as used in the text); Master, sequence with a known structure; Slave, sequence with an unknown structure, Distance, estimated mean number
of substitutions per site between the master and the slave measured on the reference alignment; Pairs, pairs defined in the core structure of the master and present
in the slave sequence, as judged from the reference alignment; Length: length of the reference alignment; λ, optimal value of λ, measured from graphs similar to
those shown in Figure 4 [in cases where the three graphs (m1, m2, m3) did not indicate the same optimum we chose a value that was at least consistent with two
of the graphs]; m1, measure m1 (overall level of identity with the reference alignment) obtained by dynamic programming with local gap penalties alignment (DP)
or by PRAGA alignment obtained with the optimal λ (PRAGA); m2, average offset measured on the structure (m2 should be as small as possible); m3, percent of
pairs found correctly aligned (the reference is the number of pairs in the master core structure conserved in the slave sequence). The sequence EMBL accession nos
are as follows: Homo sapiens, X03205; Homo sapiens mitochondrion, V00702; Oxytrichia nova, X03948; Giarda ardeae, Z177210; Latimeria chalumnae mitochon-
drion, Z21921; Xenopus laevis mitochondrion, M27605; Drosophila virilis mitochondrion, X05914; Apis mellifera mitochondrion, S51650; Penicillium chrysoge-
num mitochondrion, L01493; Chlamydomonas reinhardtii mitochondrion, M25119; Saccharomyces cerevisiae mitochondrion, V00702.

Evaluation

PRAGA was evaluated by comparing the results on the test cases
with results obtained using traditional dynamic programming,
RNAlign and by comparison with the reference alignments.
Dynamic programming was implemented using Gotoh’s algorithm
(35) with local gap penalties, so as to make it comparable with
optimizing the OF with λ = 0. Due to the length of the sequences
and the memory requirement, it was only possible to run RNAlign
(18) on two of the test cases (3 and 5).

Comparison of an alignment with the reference taken from the
databases can be done in several ways. We use three different
measures: m1, m2 and m3. m1 is the percentage of the aligned
columns of nucleotides in the reference alignment that are
reproduced in the test alignment (columns with gaps are ignored).
m2 is based on the alignment of stems. It is the average offset of
stems between the reference and the test alignment. If a position
Ak of the master sequence is aligned with Bi in the reference
alignment and with Bj in the new alignment the offset will be
(i – j). m2 is equal to the average of each offset absolute value.
The better the alignment, the smaller m2. The main advantage of
m2 is that it takes into account some close sub-optima that would
otherwise be completely disregarded by m1. Giving some credit
to these types of alignments makes sense, especially when
aligning similar structures with very divergent sequences. m3 is

a measure very similar to m1. In m3 we only consider residues
that form a pair in the secondary structure (stems). To be
considered correctly aligned both residues of a pair must be
aligned in a similar way to the reference. m3 is the percentage of
such residues over the total number of pairs in the common core
structure.

Implementation

RAGA and PRAGA are written in ANSI C and run under UNIX.
PRAGA can be run on a variety of different UNIX platforms as long
as they can each run RAGA. For RAGA the memory requirement
is ∼20 MB for an average alignment length close to 2000 regardless
of the population size. A beta release for PRAGA and RAGA is
available free of charge from the corresponding author by Email
request, including ‘RAGA or PRAGA’ in the title.

RESULTS

Dynamic programming reference

For each test case a pairwise alignment was produced using
dynamic programming with local gap penalties. Another was made
without local penalties using ClustalW. We compared these
alignments to their reference using m1, m2, m3 and found that
alignments made with local penalties were ∼10% (as measured

4575

Nucleic Acids Research, 1994, Vol. 22, No. 1Nucleic Acids Research, 1997, Vol. 25, No. 224575

Figure 3. Complexity. (a) Time (in generations) required to find a solution as a
function of λ. The distances are as in Table 1 and measure the distance between
the slave and the master sequence. Four test cases producing alignments of
similar length were used (6, 5, 4 and 3, which have lengths comprised between
900 and 1000 nucleotides). (b) Time (in generations) needed to find an optimum
as a function of alignment length. For each of the four test cases measures were
made varying λ. The four test cases used (6, 8, 7 and 9) have a comparable
distance between the master and the slave sequence (1.23–1.33). In our system
(see Methods) the time required for one generation was ∼54 s.

with m1 and m3) more similar to the reference than alignments
made without local gap penalties. We then measured the distance
between the sequences in each reference alignment, as described
in the previous section. Similarity to the reference alignment, using
measures m1, m2 and m3, was plotted against these distances. As
expected, we find that there is a clear correlation between the level
of identity of the sequences aligned and the similarity of their
pairwise alignment to the reference. In order to improve on these
results we introduced secondary structure information into the
alignment procedure and used PRAGA to do so.

Efficiency and accuracy of PRAGA

Since the optimization procedure is central to our work, we
analysed PRAGA for its ability to perform this task. We looked
at two criteria: the accuracy of optimization and the consistency
of the results. Our algorithm, being a stochastic heuristic, can be
expected to give different results when run several times with the
same set of parameters. In order to have a program that is as

Figure 4. Evaluation of optimum λ on test case 7. (a) m1 and m3 (see Methods)
were measured on the alignment produced by PRAGA with different values of
λ. (b) As (a) but with m2.

reliable as possible one would like to minimize the level of
variation from one run to another.

First, we checked, through the use of crossovers and mutations,
that our program was able to reproduce the patterns of gaps and
matches present in any of the reference alignments. We did so by
using as an OF the measure of overall identity (m1) between a
PRAGA alignment and the reference alignment. For all the test
cases the GA was able to produce alignments 100% identical to
the reference. Several runs were made for each test case that
showed a total consistency in the scores. This is a good sign that
PRAGA has the potential to explore the whole solution space
when aligning two sequences.

Since dynamic programming with local gap penalties is
equivalent to the OF described in the method with λ = 0, we
checked that when using such an OF PRAGA was able to
reproduce the dynamic programming alignments. In all cases it
managed to produce alignments having exactly the same score as
the dynamic programming reference. Here again we found a very
good consistency from run to run (<0.1% deviation). When
looking at the similarity between these alignments and the
reference we found that the deviation was significantly higher
(2.2% on m1, 2.1% on m3, 0.1 residues on m2). The highest
variations were found for alignments where the two sequences
aligned shared a low level of identity. This fact is not surprising,
since it is well known that several alternative alignments of the

Nucleic Acids Research, 1997, Vol. 25, No. 224576

Figure 5. Optimal values of λ as a function of the slave/master distance. For each
test case the values of λ leading to the best alignment were measured on plots
similar to that shown in Figure 4 and plotted against the slave/master distance.

same sequences can share the same score (36). This is simply a
consequence of the OF properties.

In a second stage PRAGA was tested with values of λ set between
1 and 9. Each test case was analysed, four runs being made with each
value of λ. Since no mathematical optimal solution was available to
serve as a benchmark for these alignments, we focused our analysis
on the consistency of the program. We found that overall the
deviation of the score of equivalent alignments was <0.5%. This
deviation tended to remain constant with different values of λ. The
deviation of the score of the comparison with the reference
alignment was higher (3.2% on m1, 2.1% on m2 and 0.4 residues
on m3) and tended to increase slightly with higher values of λ. In
order to verify that the use of dynamic programming (DPAN) was
not adding some uncontrolled bias, most of these experiments were
repeated while switching off the DPAN seeding and DPAN mutation
described in Methods. Results obtained in that way were consistent
with the rest of our experiment. This also allowed us to confirm that
the use of DPAN gives an ∼3-fold speed-up to the optimization
procedure and does not create any premature convergence problem.

Finally, an attempt was made to establish the complexity of the
algorithm as a function of the different parameters (Fig. 3a and b).
Due to the properties of the OF the time needed to compute one
generation increases linearly with the average length of the
alignments in the population. This average length is roughly
similar to the length of a regular dynamic programming
alignment. For a typical test case (7 in Table 1) the average time
needed for one generation is of the order of 54 s CPU time. The
number of generations needed to reach an optimal solution,
however, is a function of several factors, including the value of λ,
the length of the alignment and the similarity of the sequences.
Our experiments show that the level of similarity has a significant
effect on the time requirement. This is in agreement with previous
observations made on protein sequences using a similar model of
alignment (23). The complexity of the gap pattern (as seen from
the point of view of the operators) tends to increase with the

Figure 6. Comparison of PRAGA and dynamic programming with local gap
penalties using the m3 measure. Each point corresponds to one of the test cases
in Table 1. PRAGA alignments were obtained using an optimal value for λ.

distance between the two sequences, making it harder for the GA
to find the right configuration.

We also found (Fig. 3a) that for a fixed length and a fixed level
of identity the number of generations needed to reach the
optimum increases with λ. However, more remarkable is that for
λ = 0 the number of generations required tends to be independent
of the alignment length. This means that under these conditions
the time requirement increases almost linearly with the sequence
length (this observation holds when seeding is done in a random
way). In theory this is a clear improvement over dynamic
programming, which requires at least a quadratic amount of time.
In practice, however, the overhead is so large that the sequences
to be aligned would need to be extremely long (>10 000 nt) for
this speed-up to become really noticeable and we still need to
check that this linearity holds for such long sequences.

Tuning of λ

Corpet and Michot described their OF as giving the best results
with λ = 3. Since we aligned sequences with a wide range of
identity, it was important to know whether λ should be set to a
value that is a function of the distance between the slave and the
master sequence. For each of our seven test cases the accuracy, as
measured by m1, m2 and m3, was plotted against λ. Most of the
graphs show reasonable continuity, as shown in Figure 4a and b.
We deduced an optimal value for λ from each of these graphs and
found the results to be mostly consistent with each similarity
measure used (m1, m2 or m3). Figure 5 is a plot of ‘optimal λ’
against the slave/master distance. It shows that the value of λ
should roughly reflect the level of identity between the two
sequences analysed. It should be higher for sequences of low
identity and low for very similar sequences.

Our results also indicate that λ is quite a robust parameter and
that a variation of one or two around the optimal value has little
effect on the actual quality of the alignment. Such a robustness
means that one can perform a dynamic programming alignment

4577

Nucleic Acids Research, 1994, Vol. 22, No. 1Nucleic Acids Research, 1997, Vol. 25, No. 224577

beforehand, measure the distance (using Kimura or any other
scheme) and deduce from this a reasonable λ. For instance, λ
should be set to 1 for closely related sequences (distance <0.5
estimated substitutions/site), 3 for more distantly related pairs
(distance <1) and 5 for more remote homologues (distance >1).

Comparison with dynamic programming

The new alignments generated with PRAGA were compared with
those obtained by dynamic programming. In all cases (Fig. 6, Table
1) we found that using our method leads to a significant
improvement over the dynamic programming approach regardless
of the comparison measure. Although both methods follow the same
trend and decrease in accuracy when the slave/master distance
increases, PRAGA is clearly less affected than dynamic
programming. The accuracy of the alignments produced by PRAGA
is also clearly a function of the slave/master structural similarity. For
instance, let us consider test cases 6–9. These alignments have
comparable distances (1.23–1.33 estimated substitutions/site),
therefore it seems that the factor responsible for the lower accuracy
observed for 6 and 8 is mostly due to the fact that in these alignments
the level of conservation of secondary structure is lower than for 7
and 9 (see column ‘pairs’ in Table 1).

Comparison with RNAlign

An attempt was made to align each of the nine test cases using the
program RNAlign (18). This was done on a Pentium PC with
64 MB memory. Only two of the test cases (3 and 5) could be
aligned successfully. All the others caused the machine to run out of
memory or the program to issue a warning message. For 3 and 5 we
tuned λ as we did for PRAGA. The optimal values found were the
same as those reported with the GA. We found RNAlign alignments
to be roughly similar to PRAGA with the three measures (for
instance measure m3 gave 89.3% for test case 3 and 68.6 for 5).
These results are quite consistent with those obtained with PRAGA
(Table 1) and constitute one more piece of evidence that the
optimization procedure is accurately performed by our program.

The reason why the other test cases could not be aligned has to
do with the way RNAlign works. It first produces a dynamic
programming alignment with local gap penalties. In the second
stage it identifies some ‘anchor points’ in this alignment. These
are regions of the alignment that can be considered as correctly
aligned, using some conservative evaluation scheme. During the

last stage, considering the area in between the anchor points,
RNAlign performs a complex dynamic programming that takes
into account both primary and secondary structure constraints.
This dynamic programming is very intensive in terms of time
[O(M2N3)] and memory [O(M2N2)]. This means that when trying
to align sequences with low levels of identity the setting of anchor
points is difficult and leads the program to re-align stretches of the
alignment much too long to be handled in that way. In practice,
the longer the sequences, the more similar they need to be for
RNAlign to align them. To overcome these limitations the authors
use a multiple alignment (Bank) instead of a single master
sequence. From this multiple alignment they remove areas of very
low identity by a semi-automatic method and then use this
reduced profile in RNAlign.

Computation of pseudoknots

Pseudoknots are structures that involve interaction of a loop with
a domain on the 3′- or 5′-side of its stem (16,37). They can be
considered as RNA tertiary motifs. Computationally, prediction
of pseudoknots is very difficult using traditional approaches (38).
In their method Corpet and Michot (18) had to exclude
pseudoknots. It is interesting to notice that in the case of PRAGA
there is no real distinction between a pseudoknot and any other
type of Watson–Crick interaction. This means that the algorithm
should have no more difficulty in aligning pseudoknots than
normal stems. In the previous experiments, in order to remain
consistent with RNAlign, we excluded these interactions from the
master structure. In order to demonstrate the ability of PRAGA
to deal with such structures we re-introduced some of them. We
only considered pseudoknots involving more than two residues
and associated through Watson–Crick interactions. By doing so
it is possible to add 6 bp to the previously used structure. These
base pairs are boxed in green in Figure 7a and b.

The GA was then used with this new master structure, setting λ
to the optimal value previously reported. The experiment was
performed on four of the test cases (4, 6, 7 and 9) and the results
are given in Table 2. They show unambiguously that our program
can efficiently use pseudoknot information in order to improve the
alignment. It should be noted that the computation of pseudoknots
has no noticeable effect on the algorithmic complexity previously
discussed. The fact that even without having pseudoknots present
in the master structure (Table 2, PRAGA–PN) PRAGA improves
the alignment is due to the constraint imposed by other structures
in the vicinity of these pseudoknots (see Fig. 7).

Table 2. Incorporating pseudoknot information

TC Distance m2 (residues) m3 (%)

DP PRAGA PRAGA DP PRAGA PRAGA

(Struc –PN) (Struc +PN) (Struc –PN) (Struc +PN)

4 0.43 0.00 0.00 0.00 100 100 100

6 1.23 2.80 0.61 0.00 16.6 50.0 100

7 1.26 4.90 0.25 0.00 0.00 50.0 100

9 1.33 13.5 0.20 0.00 0.00 66.6 100

Alignments were made incorporating into the master structure some of the positions known to form a pseudoknot (green boxes in Fig. 7).
These positions make a total of six new pairs of nucleotides. The alignments were compared to the reference for their accuracy on the newly
added positions. m2 and m3 were calculated on the new pairs. The results (Struc +PN) were compared with those obtained by dynamic
programming with local gap penalties (DP) and by PRAGA without the pseudoknot information (Struc –PN).

Nucleic Acids Research, 1997, Vol. 25, No. 224578

Figure 7. Comparison of dynamic programming (a) and PRAGA (b) on test case 9. The boxed stems indicate stems that were included in the master structure (Homo
sapiens mitochondrion). Blue portions are the elements not shared by the two structures (and therefore not part of the master structure). A stem is considered correctly
aligned if at least one position of its alignment is strictly identical to the reference alignment. This scheme does not take pairing into account. This explains why it
is possible to have only the left or the right strand of a stem correctly aligned. The pseudoknots boxed in green are those that were used in the alignment (see text).

a

4579

Nucleic Acids Research, 1994, Vol. 22, No. 1Nucleic Acids Research, 1997, Vol. 25, No. 224579

b

DISCUSSION

PRAGA is a powerful tool for RNA alignment. Using existing
structures allowed us to predict quite accurately the core structure
of several ribosomal sequences, even those remotely related to the
sequence for which the master structure was known. We also
show that this type of analysis can capture some of the tertiary
properties of the folding, such as pseudoknot interactions.

The next step with PRAGA will be implementation of an OF
that allows the use of a whole alignment instead of a single master

sequence. We are currently investigating ways of maximizing the
information that can be extracted from such alignments (sequence
weighting, local penalties, local substitution schemes, use of
secondary structure, etc.). Using a GA gives us a lot of freedom
in the design of the OF. In practice, almost any type of constraint
or information can be built into an OF and used for optimization
purposes. This could include, for instance, SCFG-based functions,
which have sounder theoretical justifications than the function we
have been using here (39). Another possible extension of PRAGA
would be to use the alignment to predict non-conserved stems

Nucleic Acids Research, 1997, Vol. 25, No. 224580

between correctly aligned core stems with traditional folding
prediction methods (4). We are currently investigating ways of
defining the local reliability of a given alignment in order to
produce a complete structure.

The RAGA algorithm itself is mostly adapted from SAGA
(23). This means that the operators used by RAGA were initially
designed for aligning protein sequences (linear alignments). It is
surprising that these operators do so well in a context where long
range non-linear pairings are involved. We believe that this can
be explained by the balance between potentially disruptive
operators, such as crossovers, and the ability of the other
operators (mutations) to fix these disruptions. This balance is
automatically maintained by dynamic scheduling of the operators
usage probability. It should be noted that the uniform crossover
is much less disruptive than would be other forms of exchange,
such as the one point crossover described for SAGA. In many
cases the uniform crossover tends to respect long range
interactions, simply because they often belong to stable parts of
the alignment and are likely to be widespread in the population.
This approach could probably be taken further and new operators
could be designed with respect to the RNA tree structures (40) or
using stochastic context-free grammar.

A very important aspect of PRAGA is its ability to deal with
noise. By noise we mean unconserved secondary elements that
are present in the master structure and absent in the slave
structure. We have shown that although such elements
significantly decrease the performance of our algorithm, overall,
even in these cases, PRAGA remains significantly better than any
other alternative we know of. In the future we will focus our
attention on defining a better OF that would be able to
discriminate this type of event, therefore minimizing their
negative effect.

Although our algorithm has been specifically designed for
aligning rRNA, it can in theory be applied to any structured RNA.
An aspect of PRAGA that still needs to be studied would be its
ability to discriminate between RNA structural homologues. The
program is too slow to be used for scanning databases as it is now,
but since it is a GA, it can also produce sub-optimal solutions in
a shorter time. In our experience the quality of the solution found
by PRAGA in the first 10% of a run is usually a good indicator
of the overall score that may be reached after further optimization.
This property could be used to design a ‘short PRAGA’ as some
sort of filter, later focusing the long runs on candidates having a
potentially good structural match with some query sequence.

ACKNOWLEDGEMENTS

This work was partly supported by a grant from the EC
Biotechnology Program (BIO4-CT95 0130). We wish to thank
Burkhart Rost and Miguel Andrade for useful comments. We also
wish to thank the three anonymous referees for their useful
remarks and interesting suggestions.

REFERENCES

1 Needleman,S.B. and Wunsch,C.D. (1970) J. Mol. Biol., 48, 443–453.
2 Michot,B., Qu,L.H. and Bachellerie,J.P. (1990) Eur. J. Biochem., 188,

219–229.
3 Gutell,R.R., Weiser,B., Woese,C.R. and Noller,H.F. (1985) Prog. Nucleic

Acid Res. Mol. Biol., 32, 155–216.
4 Zuker,M. (1989) Science, 244, 48–52.
5 Gouy,M. (1987) In Bishop,M.J. and Rawlings,C.J. (eds), Nucleic Acid and

Protein Sequence Analysis: A Practical Approach. IRL Press, Oxford, UK,
pp. 259–284.

6 Schmitz,M. and Steger,G. (1996) J. Mol. Biol., 255, 254–266.
7 Shapiro,B.A. and Wu,J.C. (1996) Comput. Applicat. Biosci., 12, 171–180.
8 Gultayaev,A.P., van Batenburg,F.D.H. and Pleij,C.W.A. (1995) J. Mol.

Biol., 250, 37–51.
9 Ogata,H., Yutaka,A. and Minoru,K. (1995) Nucleic Acids Res., 23,

419–426.
10 Sankoff,D. (1985) SIAM J. Applicat. Math., 45, 810–825.
11 Eddy,S.R. and Durbin,R. (1994) Nucleic Acids Res., 22, 2079–2088.
12 Kim,J., Cole,J.R. and Pramanik,S. (1996) Comput. Applicat. Biosci., 12,

259–267.
13 Lathrop,R.H. (1994) Protein Engng, 7, 1059–1068.
14 Sakakibara,Y., Brown,M., Underwood,R.C., Mian,I.S. and Haussler,D.

(1994) In 27th Hawaii International Conference on System Sciences. IEEE
Computer Society Press, Los Alamitos, CA, pp. 284–293.

15 Lefebvre,F. (1995) In ISMB-95. AAAI Press, CA, pp. 222–230.
16 Pleij,C. (1990) Trends Biochem. Sci., 15, 143–147.
17 Tabaska,E.J. and Stormo,G.S. (1997) In ISMB-97. AAAI Press,

Menlo Park, CA, pp. 311–318.
18 Corpet,F. and Michot,B. (1994) Comput. Applicat. Biosci., 10, 389–99.
19 Davis,L. (1991) The Handbook of Genetic Algorithms. Van Nostrand

Reinhold, New York, NY.
20 Goldberg,D.E. (1989) Genetic Algorithms in Search, Optimization and

Machine Learning. Addison-Wesley, New York, NY.
21 Kirkpatrick,S., Gelatt,C.D.J. and Vecchi,M.P. (1983) Science, 220,

671–680.
22 Lawrence,C.E., Altschul,S.F., Boguski,M.S., Liu,J.S., Neuwald,A.F. and

Wootton,J.C. (1993) Science, 262, 208–214.
23 Notredame,C. and Higgins,D.G. (1996) Nucleic Acids Res., 24,

1515–1524.
24 Thompson,J.D. (1995) Comput. Applicat. Biosci., 11, 19–29.
25 Thompson,J., Higgins,D. and Gibson,T. (1994) Nucleic Acids Res., 22,

4673–4690.
26 Gerstein,M. and Levitt,M. (1996) In Fourth International Conference on

Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, CA,
pp. 59–67.

27 Gotoh,O. (1993) Comput. Applicat. Biosci., 9, 361–370.
28 Myers,E.W. and Miller,W. (1988) Comput. Applicat. Biosci., 4, 11–17.
29 Van de Peer,Y., Jansen,J., De Rijk,P. and De Watcher,R. (1997) Nucleic

Acids Res., 25, 111–116.
30 Neefs,J.M. and De Wachter,R. (1990) Nucleic Acids Res., 18, 5695–5704.
31 Neefs,J.M., Van de Peer,Y., De Rijk,P., Chapelle,S. and De Wachter,R.

(1993) Nucleic Acids Res., 21, 3025–3049.
32 Subramanian,A.R. (1985) Essays Biochem., 21, 45–85.
33 Felsenstein,J. (1988) Cladistics, 5, 355–356.
34 Kimura,M. (1980) J. Mol. Evol., 16, 111–120.
35 Gotoh,O. (1982) J. Mol. Biol., 162, 705–708.
36 Gotoh,O. (1990) Bull. Math. Biol., 52, 509–525.
37 Westhof,E. and Jaeger,L. (1992) Curr. Opin. Struct. Biol., 2, 327–333.
38 Abrahams,J.P., van der Berg,M., van Batenburg,E. and Pleij,C. (1990)

Nucleic Acids Res., 18, 3035–3044.
39 Grate,L. (1995) In ISMB-95. AAAI Press, Menlo Park, CA, pp. 136–144.
40 Shapiro,B.A., Maizel,J., Lipkin,L.E., Currey,K. and Whitney,C. (1984)

Nucleic Acids Res., 12, 75–88.

