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ABSTRACT

We describe a new approach for accurately aligning
two homologous RNA sequences when the secondary
structure of one of them is known. To do so we
developed two software packages, called RAGA and
PRAGA, which use a genetic algorithm approach to
optimize the alignments. RAGA is mainly an extension
of SAGA, an earlier package for multiple protein
sequence alignment. In PRAGA several genetic
algorithms run in parallel and exchange individual
solutions. This method allows us to optimize an
objective function that describes the quality of a RNA
pairwise alignment, taking into account both primary
and secondary structure, including pseudoknots. We
report results obtained using PRAGA on nine test
cases of pairs of eukaryotic small subunit rRNA
sequence (nuclear and mitochondrial).

INTRODUCTION

taking into account primary and secondary information. Some
methods attempt to simultaneously align and fold sequences
(10-12). Their main drawback is that they remain limited to sets
of short sequences (<200 nt long).

To reduce the complexity of this problem it is also possible to
align a sequence (or a set of sequences) of unknown structure to
some pre-established reference master structure. Such alignments
include non-local interactions and their solution has been shown
to be NP hard1(3). Nevertheless, for small sequences sensible
results can be obtained. Several methods of this type, based on the
use of stochastic context free grammar (SCFG) for the description
of RNA non-pseudoknotted secondary structure, have been
described 11,14,15). Pseudoknots, however, are important
motifs in RNA folding (L6) and recently some new results have
been obtained on this aspect of RNA analysis. This includes the
work of Tabaska and Stormd7) for aligning an RNA sequence
to a pseudoknotted structure in polynomial time. Unfortunately,
all these methods have the limitation of being computationally
very expensive and therefore remain restricted to small sequences
(<200 nt long).

This problem can be partially overcome by heuristic methods.

Most methods of alignment are based on the primary structure of f@erpet and Michot have described an approach of this 1yje (
sequences to be analysédl @Alignment may be straightforward In this case a heuristic allows identification of the portions of an
when the primary structure is conserved but becomes less and lelignment that can be made without using secondary structure
accurate as the evolutionary distance increases. In the case of RiNfsrmation. The remaining portions, if they are small enough,
it may be possible to use secondary structure information t@mn then be aligned using non-local interactions. This is done with
supplement the weak primary structure information. Such specialized dynamic programming algorithm. Although this
alignments, using primary and secondary constraints, have besgorithm is less efficient than that described for SCFG-based
built for rRNAs @,3). Their construction is at least partially alignments, the heuristic filtering makes it possible, in some
manual and is usually based on identification of sets of correlatedses, to align long RNA molecules (e.g. >1500 nt). At the

mutations which suggest secondary structure interactions.

moment this is largely beyond the scope of any SCFG-based

One justification for such methods is the fact that accuratgorithm. Unfortunately, the algorithm cannot deal with very

alignment is still the main non-experimental way to establish divergent sequences and does not support the computation of
reliable secondary structure for a long RNA molecule. The onlgseudoknots. As opposed to the SCFG-based scoring scheme, tha
other alternative iab initio prediction. Several techniques of this used by Corpet and Michot has no real theoretical justification.
type have been developed over tirndes), but they recently Nevertheless, it has the merit of being conceptually simple as well
received renewed attention through the use of stochastis leading to computation of sensible alignments (as judged by
heuristic-based approaches, like simulated annediy énd  comparison with established reference alignmet) (

genetic algorithms3(9). Nevertheless, they remain limited by the For this reason we took the overall approach and scoring
fact that our understanding of timevivo folding process is still  scheme of Corpet and Michot but used a genetic algorithm (GA)
incomplete. In contrast, homology analysis based on alignmerttscarry out the optimization. This has two significant advantages.
does not have these limitations. Multiple alignments reveal theirstly, in the GA context there is no difference between the
positions of the sequences on which some constraints exiegndling of pseudoknots and any other secondary structure.
regardless of the actual cause of these constraints. Sevesakondly, it is possible to attempt to find alignments between
algorithms have been developed for aligning RNA sequencesuch longer sequences, such as complete small subunit rRNAS,
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which can be >2000 nt in length. The genetic algorithms (GA) g N
(19,20), like simulated annealin@{) or Gibbs sampling2Q), is foled
a stochastic optimization technique. It involves an attempt at
optimizing some cost function (objective function, OF) by
modifying and combining a population of solutions (individuals).
GAs do not guarantee an optimal solution, but are known to
perform well with combinatorial or enumeration problems.

We based our approach directly on a previous package, SAGAb
(Sequence Alignment by Genetic Algorithm®3), This I m B m
algorithm was improved and parallelized. A suitable cost function B e e S W A s s W
that describes the quality of a RNA alignment was introduced,

mostly based on the function described by Corpet and Michot
(18). The package was name PRAGA for Parallel RNA | ' Do
Alignment by Genetic Algorithm. We compared this algorithm ]

with traditional techniques of sequence alignment and, to some
extent, with the program RNAIligri ). c

SACAGCUGAU  AucGauacu®

»|

0o
o>

METHODS

The aim is to align two related sequences of RNA, knowing the
secondary structure (master structure) of one of them (master s.cavea®™ucean? s g

sequence), in order to predict the position of these structural

elements in the second sequence (slave sequence). In the correct

signmen elements of the o sequences sharing the sarr | A ST 1 s Smnce i s S Soqumte o
structure and/or Sequence. should be aligned CE’:IgC) A unknown structl?re using primary (Pr scorec)] and secondary structurg (Se score)
measure (OF) can be des'Qned that allows ev_aluat'on of therormation. €) Prediction of the structural elements of the slave sequence
quality of such an alignment. This measure takes into account tk@ared with the master sequence.

guality of the sequence alignment and the stability of the folding

induced by the master sequence onto the slave sequence. To

produce the best scoring alignment according to this measure Wared, A is aligned with & and A with By then the score Se is
used a GA. We also describe a parallel GA that we have Qe5|gr@gJa| to the pairing score ofiBvith B,. In practice, a very

to gain some speed over a serial one. The results obtained Wiftplified model was used to assign pairing scores, giving 2 for
several sets of sequences were compared with establishgd pairs and 1 for UA and UG pairs (UG is not a conventional
reference alignments of the same sequences, using thig@tson—Crick base pair but stems in RNA frequently contain UG

G 0 0 o c ¥
C > oo 5 d

comparison methods. pairs) or any other interaction involving one of the wildcards X
or N. The other pairs are given a score of 0. Se is the sum of the
Objective function scores associated with each pair in the structure of B induced by

the structure of A.
The function we use was described by Corpet and Midl@t ( Itis usually necessary to insert gaps into one or both sequences
We implemented it in RAGA without any modification. It in order to perform the alignment. These gaps represent insertion
combines three different scores: Pr, the primary score; Se, tbedeletion events that have occurred over time in both sequences.
secondary score; a gap penalty score. The overall score isTlaey may not occur completely at random and may happen more
combination of these three values. The higher this score, the befi@quently in loops or in non-structured domains. In order to
the alignment between the two sequences. reflect this in the OF, two position-specific gap penalties are used
Pris a function of the aligned pairs of residues in the alignmerfbllowing the model of Corpet and Michatg): GOS, a penalty
It depends on a matrix where each possible pair of residuesfs opening a gap between two stacked pairs; GO, a penalty for
given a score. In the case of RNA a simple identity matrix is useghbening a gap in non-structured regions.
with a mismatch score of 0 and a match score of 1. All positionsA third penalty (GEP) is used to penalize gap length. It is
containing a gap are ignored at this point. Pr is therefore equaldalculated as GEF length of gap. Terminal gaps are not
the number of matches in the pairwise alignment. penalized. We use the values proposed by Corpet and Michot with
Se is based on the secondary structure. It evaluates the stabiliip = 5, GOS = 8, GEP = 0.3. The total gap penalty of an
of the folding induced by the master onto the slave sequencealfgnment is equal to:
two nucleotides form a base pair (part of a stem) in the master,
then the two nucleotides in the slave sequence aligned with them 9@p penalty =g x GOS) + b x GO) + € x GEP) 1

should be able to form a Watson-Crick base pair as well if tig/hereq is the number of gaps between stacked pairs in stems,
secondary structure is conserved. Since pairings are relativelyihe number of other non-terminal gaps aigtthe total length
well defined in RNA, it is possible to assign a score to the pairing 4| the non-terminal gaps. The complete alignment score is

potential of the sequence of unknown structure. This can Rgcyjated using a new paramekemhich is always a positive
formalized as follows. Given two sequences A (master) and By e

(slave) with (A,A)) being two nucleotides of A and By, the
equivalent aligned nucleotides of B, if@nd A are known to be alignment score = Pr & (x Se) — gap penalty 2
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The parametex has the effect of balancing the contribution fromregular dynamic programming method®78), therefore
primary structure information and from secondary structure. producing sub-optimal alignments centred around the
mathematical optimum obtained by dynamic programming
Optimization of the objective function without noise. In practice, when two sequences are aligned
o _ o several times with DPAN long stretches of conserved residues
The function in equatiodwas shown to be a good indicator of thetend to be kept intact, while diversity accumulates in less stable
quality of an alignment1@). The main drawback is that its regions of the alignment. It is possible to control the overall
optimization is difficult wher is given a value other than 0. In the gmount of noise added. In RAGA this noise was tuned so that the
case ofA = O the contribution of secondary structure to thesverage score of the alignments used for seeding would be the
alignment is ignored. Such a function can be optimized by regulgame as the average score of a population of random alignments.
dynamic programming with local gap penaltie2{). However,  Even with such a bad initial average score, a population generated

when) is not zero optimization becomes much harder. A variatiop this way improves about three times faster than a completely
of dynamic programming has been described. It requitddN%  random population.

space and G{2N3) time (18), M andN being the lengths of the
sequences or profiles to align. Such a high complexity makesHvaluation/breeding/endhe rest of the GA procedures involved
hard to apply this algorithm to anything other than small sequences RAGA are taken directly from SAGA. Individuals are first
or fragments of alignments. Another limitation of this approach isvaluated through the OF described earlier and then given an
that it cannot easily deal with pseudoknots. In order to overconexpected offspring score that reflects their quality in comparison
these two problems we used a GA. with the rest of the individuals of the same generation. At each
RAGA is derived from the Simple Genetic Algorithm describedgeneration half of the population (lowest scoring alignments) is
by Goldberg 20). It involves using a population of solutions which replaced by newly generated individuals (children). To produce
evolve by means of natural selection. The population we considechild an operator is selected (mutation or crossover). In the case
is made of pairwise alignments. Initially a generation zegpi€G  of a mutation one parent is chosen to which the mutation is
created (initialization). In this population each individual consistsipplied to produce a modified alignment that is put back into the
of one possible alignment for the sequences to be aligned. The gmpulation. In the case of a crossover the procedure is the same,
of this population is kept constant. To go from one generation faut two parents are used. Children are put back into the population
the next, children are derived from parents that are chosen by soomy when they are different from all the other children
kind of ‘natural selection’, based on their fithess as measured yopulation without duplicates). The selection of a parent is made
OF (i.e. the better the parent, the more children it will have). Tby weighted wheel selection, a standard practice in GA: a virtual
create a child an operator is selected that can be a crossover (mixitteel is spun where each individual has a number of slots
the contents of the two parents) or a mutation (modifying a singlgroportional to its expected offspring. Therefore the fittest are
parent). There are several types of mutations, modifying th@ore likely to be chosen as parents, while the weakest still have
alignments in different ways. Each of these has a probability @ chance to survive.
being chosen that is dynamically optimized during the run Each operator has a probability of being used which varies
(dynamic scheduling). along the run, depending on how well it performed. This
These steps are repeated iteratively, generation after generataiomatic process is known as dynamic scheduling of the
(evaluation/breeding). During these cycles new pieces afperators and has been described in greater deiaiBf. When
alignment appear because of the mutations and are combinednoy improvement has been made for a specified number of
the crossovers. This selection makes sure that good pieces sungeaerations (typically 100 generations on a run of 400 generations),
and dynamic setting of the operators helps the population the GA is stopped.
improve by creating the children it needs. Following this simple ] -
process the average fitness of the population increases until e operatorsAccording to the traditional nomenclature of

more improvement can be made. The best alignment obtainedgfinetic algorithmsX0) two types of operators are used in RAGA:
this way is taken as a result. crossovers and mutations. In RAGA we do not make any

T ) ) ~ distinction between these two types with regard to how we apply
Initialization. The first step of the algorithm is initialization, them. They are designed as independent programs that input one
during which a population of solutions is created (seeding). Thg two alignments (the parents) and output one alignment (the
two desirable properties of an initial population are to have agild). The difference in score between the input and output is
much diversity as possible and to contain as many good scorifiged for future evaluation of the usefulness of the operator. Each
blocks as possible (i.e. individuals as good as possible). Seedg§erator requires one or more parameters which specify where
in a random manner allows one to have high diversity, but veihd how the operation is to be carried out. For instance, an
few good scoring blocks. Such a population will usually improveyperator inserting a new gap must be told where (at which
slowly. On the other hand, seeding with greedy methodsosition in the alignment) and in which sequences the gap is to be
[e.g. ClustalW 25) and other alignment software] gives ainserted and how long this gap will be. The operators display
population with a better initial score at the cost of lower diversityseveral levels of greediness. Some are completely stochastic
Such a population usually improves very quickly, but tends to ggte. the values of the parameter are determined randomly in some

stuck into a local minimum close to the starting point. reasonable range), while others aim at some local optimization
In RAGA we tried to find a good trade-off between these tweynd rely on enumeration or DPAN.

extremes. A variation on dynamic programming described by

Gerstein 26) was used to produce our initial alignments. ThisThe crossoversThese operators allow good pieces to be
method (Dynamic Programming with Added Noise, DPAN inrecombined and therefore play a central role in improving the
this paper) allows addition of a random amount of noise to theopulation. In RAGA only one type of crosover is implemented:
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population equivalent to the overall population of all the GAs. By
default, after trial and error optimization, we used a three-

branched tree with a depth of three, as shown in F@uFéais
model requires 13 GAs. The processes are synchronous and wait
for each other to reach the same generation number before
exchanging their populations. In terms of CPU time this
implementation can Bl 0 times faster than a single GA with the
same overall population. This means that wel@&o of the
maximum speed-up. A typical population size for each GA is 30
and population migration occurs every five generations. A GA
that receives new individuals (node) replaces half of its popula-
tion that way (15 individuals). These 15 individuals are made up
of three groups of five individuals coming from the previous
nodes/leaves. This parallel GA was named PRAGA for Parallel
RNA Alignment Genetic Algorithm. All of our results were
obtained using PRAGA.

RAGA: Node

RAGA: Root
. | ——P POPULATION EXCHANGE EVERY 5 GENERATIONS Test cases

To assess the efficiency and accuracy of PRAGA several test
Figure 2. Layout of the parallel genetic algorithm PRAGA. Each circle cases were designed. We us.ed aligned rRNA sequenc_es, obtainec
represents a RAGA process. The best individuals migrate from top to bottomTOM @ manual expert alignment of small subunit (SSU)
The best solution is to be found in the root (bottom). sequence=0). This database contains large alignments of rRNA
made by hand. These alignments come with predicted secondary
structure. To build a test case two sequences were extracted from
a multiple alignment. This initial alignment was kept as a
the uniform crossover (UCO) previously used in SAGA. Theeference. From the same alignment the structure (master
principle is to map the areas of alignment which are consistestructure) of one of the two sequences (master sequence) was ther
(identical) between the two parents. The child will contain alextracted. In this structure we kept only the elements documented
these identical blocks as well as non-identical blocks taken froes belonging to the conserved core which is found in most SSU
either of the parents. The choice of a non-consistent block can i/NAs (30,31). These elements were chosen because they were
random or deterministic. Both versions (random andikely to exist in the second sequence (slave sequence).
deterministic) are implemented in RAGA. We designed two large test cases (test cases 1 and 2 id)Table
- . . ... using full-length eukaryotic nuclear sequences. These two sets
Gap shifting.In order to keep improving the population it is |,ca the human SSU rRNA as a master sequeno®wytdchia
necessary to introduce new alignment configurations. This can ﬁSvaandGiardia ardeaeas slaves. These sequences are 65 and
done by shifting gaps. To do so a gap is randomly chosen in 8o, jgentical respectively to the master human sequence. The
alignment and moved to another position. The choice of the n rpose of these two test cases is to show the ability of the GA to
position can be random or greedy, in which case the gap is SI0\(’:%;timize long alignments consisting of sequencesPokb in
shifted in one direction as long as the score of the alignment keqgSgth. In order to obtain test cases with a wider range of identity
Improving. between the master and the slave sequence we turned to the

Gap insertion.This operation is made by DPAN as describe(gitOChondrial SSU rRNA sequences. These sequences diverge
i

earlier. It is only performed on a portion of random size that
extracted from the alignment, re-aligned and re-introduced.

ster than their nuclear counterpa®g)( have a wider spectrum
of identity and are also generally smallet-{1.5 kb in length).
This allowed an extensive study of some of the properties of our
Island parallelization. In order to decrease run times wealgorithm. This set of seven test cases (Thlitest cases 3-9) was
implemented an island parallelization moda0)( Instead of created using the procedure already described. Sequences anc
having a single copy of RAGA, several identically configuredstructures were extracted from the database alignragntWe
GAs were used, running independently in parallel andgsed the human mitochondrial SSU rRNA as a master sequence
exchanging individuals evelygenerations, wheiéis typically ~ and seven other mitochondrial sequences as slaves. Their identity
5. The algorithms are arranged on a k-branched tree aMdth the human sequence ranges from 70 to 43%. Some of the
population exchange only takes place in one direction, from ti#ave sequences do not contain all the structural elements
leaves to the bottom of the tree (FlYy.By default the individuals ~ described in the core structure used for the alignment (Table
migrating from one RAGA to another are those having the beBgirs column). This gave us a chance to analyse the effect of this
score. They replace individuals with lower scores in the node tgPe of noise on our optimization procedure.
which they move. The node from which they come keeps a copy, The distances between the two sequences of a given test case wer

so that in each RAGA process the population remains constarmfeasured using the program Dnadist in the package P3g)lie
used this program to assess the ‘Kimura with 2 parameters’ distance

We found that this model gives results comparable with whgB4), with a default ‘transition/transvertion’ ratio set to 2 and one
would be obtained with a single copy of RAGA having acategory of substitution rates.
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Table 1.Test cases and general results

TC Master Slave Distance Pairs (%) Length A m1 (%) m2 (residues) m3 (%)
DP PRAGA DP PRAGA DP PRAGA
1 Homo sapiens Oxytrichia nova 0.41 82.5 1914 1.00 83.9 86.6 0.15 0.06 85.3 947
Homo sapiens  Giarda ardeae 0.57 82.1 1895 3.00 722 76.1 0.53 0.45 65.2 81.3
3 Homo sapiens Latimeria chalumnae 0.31 81.2 998 1.00 85.9 925 0.64 0.10 826 96.1
mitochondrion mitochondrion
4 Homo sapiens Xenopus laevis 0.43 84.9 985 1.00 83.9 925 0.41 0.20 77.4 96.7
mitochondrion mitochondrion
5 Homo sapiens Drosophila virilis 0.76 82.6 973 3.00 66.8 76.6 2.08 1.59 48.6  68.5
mitochondrion mitochondrion
6 Homo sapiens Apis mellifera 1.23 72.1 977 4.00 452 56.0 3.83 2091 241 55.1
mitochondrion mitochondrion
7 Homo sapiens Penicillium 1.26 81.3 1478 4.00 37.7 638 496 3.21 15.7 77.0
mitochondrion chrysogenum
mitochondrion
8 Homo sapiens Chlamydomonas 1.30 66.6 1271 4.00 34.1 532 134 8.26 8.90 50.0
mitochondrion reinhardtii
mitochondrion
9 Homo sapiens Saccharomyces 1.33 80.3 1699 6.00 31.6 60.2 147 3.70 216 70.0

mitochondrion cerevisiae
mitochondrion

TC, test case number (as used in the text); Master, sequence with a known structure; Slave, sequence with an unknoRistnegtuestimated mean number

of substitutions per site between the master and the slave measured on the reference alignment; Pairs, pairs defirestindfueecof the master and present

in the slave sequence, as judged from the reference alignment; Length: length of the reference aligoptierd] value ok, measured from graphs similar to
those shown in Figure 4 [in cases where the three graphs (m1, m2, m3) did not indicate the same optimum we chose aasadtidethsit @onsistent with two

of the graphs]; m1, measure m1 (overall level of identity with the reference alignment) obtained by dynamic programmaaj gagh penalties alignment (DP)

or by PRAGA alignment obtained with the optimalPRAGA); m2, average offset measured on the structure (m2 should be as small as possible); m3, percent
pairs found correctly aligned (the reference is the number of pairs in the master core structure conserved in the slayersegsreence EMBL accession nos

are as followstHomo sapiens<03205;Homo sapienmitochondrion, VOO702)xytrichia novaX03948,Giarda ardeaeZ177210Latimeria chalumnaeitochon-

drion, 221921 Xenopus laevimitochondrion, M27603)rosophila virilis mitochondrion, X05914Apis melliferamitochondrion, S5165@®enicillium chrysoge-
nummitochondrion, L01493Chlamydomonas reinhardtihitochondrion, M25119Saccharomyces cerevisiagtochondrion, VO0702.

Evaluation a measure very similar to m1. In m3 we only consider residues
that form a pair in the secondary structure (stems). To be
PRAGA was evaluated by comparing the results on the test casemsidered correctly aligned both residues of a pair must be
with results obtained using traditional dynamic programmingaligned in a similar way to the reference. m3 is the percentage of
RNAlign and by comparison with the reference alignmentssuch residues over the total number of pairs in the common core
Dynamic programming was implemented using Gotoh'’s algorithretructure.

(35) with local gap penalties, so as to make it comparable with

optimizing the OF witfA = 0. Due to the length of the sequencegmplementation

and the memory requirement, it was only possible to run RNAlign ) .

(18) on two of the test cases (3 and 5). RAGA and PRAGA are written in ANSI C and run under UNIX.
Comparison of an alignment with the reference taken from tHeRAGA can be run on a variety of different UNIX platforms as long
databases can be done in several ways. We use three diffe@hth€y can each run RAGA. For RAGA the memory requirement
measures: m1, m2 and m3. m1 is the percentage of the aligrig20 MB for an average alignment length close to 2000 regardiess
columns of nucleotides in the reference alignment that a the population size. A beta release for PRAGA and RAGA is
reproduced in the test alignment (columns with gaps are ignoredyailable free of c‘harge from the cqrresponQ|ng author by Email

m2 is based on the alignment of stems. It is the average offset'®fuest, including ‘RAGA or PRAGA in the fitle.

stems between the reference and the test alignment. If a position

Ay of the master sequence is aligned withirBthe reference  RESULTS

alignment and with Bin the new alignment the offset will be Dynamic programming reference

(i—]). m2 is equal to the average of each offset absolute value’
The better the alignment, the smaller m2. The main advantagefsdr each test case a pairwise alignment was produced using
m2 is that it takes into account some close sub-optima that woudginamic programming with local gap penalties. Another was made
otherwise be completely disregarded by m1. Giving some creditithout local penalties using ClustalW. We compared these

to these types of alignments makes sense, especially whalignments to their reference using m1, m2, m3 and found that
aligning similar structures with very divergent sequences. m3 aignments made with local penalties wéi0% (as measured
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Figure 4.Evaluation of optimum on test case 7aYm1 and m3 (see Methods)
Figure 3. Complexity. &) Time (in generations) required to find a solution as a  WVere measured on the alignment produced by PRAGA with different values of
function ofA. The distances are as in Table 1 and measure the distance betweeh: () AS (&) but with m2.
the slave and the master sequence. Four test cases producing alignments of
similar length were used (6, 5, 4 and 3, which have lengths comprised between
900 and 1000 nucleotides)) (Time (in generations) needed to find an optimum

as a function of alignment length. For each of the four test cases measures weig/iableé as possible one would like to minimize the level of
made varyingh. The four test cases used (6, 8, 7 and 9) have a comparabl¥ariation from one run to another.
distance between the master and the slave sequence (1.23-1.33). In our systenfirst, we checked, through the use of crossovers and mutations,
(see Methods) the time required for one generatiorlbdss. that our program was able to reproduce the patterns of gaps and
matches present in any of the reference alignments. We did so by
using as an OF the measure of overall identity (m1) between a
with m1 and m3) more similar to the reference than alignment8RAGA alignment and the reference alignment. For all the test
made without local gap penalties. We then measured the distagéses the GA was able to produce alignments 100% identical to
between the sequences in each reference alignment, as describedreference. Several runs were made for each test case thal
in the previous section. Similarity to the reference alignment, usirghiowed a total consistency in the scores. This is a good sign that
measures m1, m2 and m3, was plotted against these distancesPRAGA has the potential to explore the whole solution space
expected, we find that there is a clear correlation between the lewdien aligning two sequences.
of identity of the sequences aligned and the similarity of their Since dynamic programming with local gap penalties is
pairwise alignment to the reference. In order to improve on thesguivalent to the OF described in the method with O, we
results we introduced secondary structure information into thghecked that when using such an OF PRAGA was able to

alignment procedure and used PRAGA to do so. reproduce the dynamic programming alignments. In all cases it
managed to produce alignments having exactly the same score as
Efficiency and accuracy of PRAGA the dynamic programming reference. Here again we found a very

good consistency from run to run (<0.1% deviation). When
Since the optimization procedure is central to our work, wéooking at the similarity between these alignments and the
analysed PRAGA for its ability to perform this task. We lookedeference we found that the deviation was significantly higher
at two criteria: the accuracy of optimization and the consistend.2% on m1, 2.1% on m3, 0.1 residues on m2). The highest
of the results. Our algorithm, being a stochastic heuristic, can bariations were found for alignments where the two sequences
expected to give different results when run several times with ttadigned shared a low level of identity. This fact is not surprising,
same set of parameters. In order to have a program that issitsce it is well known that several alternative alignments of the
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Figure 5.Optimal values of as a function of the slave/master distance. Foreach _. . f dd . . ith local
test case the values bleading to the best alignment were measured on plots F19uré 6. Comparison of PRAGA and dynamic programming with local gap

similar to that shown in Figure 4 and plotted against the slave/master distancePenalties using the m3 measure. Each point corresponds to one of the test cases
9 P 9 in Table 1. PRAGA alignments were obtained using an optimal valde for

distance between the two sequences, making it harder for the GA

same sequences can share the same s&)rdis is simply a  to find the right configuration.
consequence of the OF properties. We also found (Fig3a) that for a fixed length and a fixed level

In a second stage PRAGA was tested with valuksefbetween of identity the number of generations needed to reach the
1 and 9. Each test case was analysed, four runs being made with egatimum increases with. However, more remarkable is that for
value ofA. Since no mathematical optimal solution was available ta = 0 the number of generations required tends to be independent
serve as a benchmark for these alignments, we focused our analgsithe alignment length. This means that under these conditions
on the consistency of the program. We found that overall ththe time requirement increases almost linearly with the sequence
deviation of the score of equivalent alignments was <0.5%. Thiength (this observation holds when seeding is done in a random
deviation tended to remain constant with different values ©he  way). In theory this is a clear improvement over dynamic
deviation of the score of the comparison with the referengerogramming, which requires at least a quadratic amount of time.
alignment was higher (3.2% on m1, 2.1% on m2 and 0.4 residugspractice, however, the overhead is so large that the sequences
on m3) and tended to increase slightly with higher valuds lof  to be aligned would need to be extremely long (>10 000 nt) for
order to verify that the use of dynamic programming (DPAN) wathis speed-up to become really noticeable and we still need to
not adding some uncontrolled bias, most of these experiments weheeck that this linearity holds for such long sequences.
repeated while switching off the DPAN seeding and DPAN mutation
described in Methods. Results obtained in that way were consistq%ing of A
with the rest of our experiment. This also allowed us to confirm that
the use of DPAN gives am3-fold speed-up to the optimization Corpet and Michot described their OF as giving the best results
procedure and does not create any premature convergence probigith A = 3. Since we aligned sequences with a wide range of

Finally, an attempt was made to establish the complexity of thidentity, it was important to know wheth&rshould be set to a
algorithm as a function of the different parameters @a@nd b).  value that is a function of the distance between the slave and the
Due to the properties of the OF the time needed to compute amaster sequence. For each of our seven test cases the accuracy,
generation increases linearly with the average length of tmeeasured by m1, m2 and m3, was plotted agairdbst of the
alignments in the population. This average length is roughigraphs show reasonable continuity, as shown in Figuend b.
similar to the length of a regular dynamic programming/Ne deduced an optimal value fofrom each of these graphs and
alignment. For a typical test case (7 in Tdblthe average time found the results to be mostly consistent with each similarity
needed for one generation is of the order of 54 s CPU time. Theeasure used (m1, m2 or m3). Fighre a plot of ‘optimal\’
number of generations needed to reach an optimal soluticagainst the slave/master distance. It shows that the vahie of
however, is a function of several factors, including the valde of should roughly reflect the level of identity between the two
the length of the alignment and the similarity of the sequencesequences analysed. It should be higher for sequences of low
Our experiments show that the level of similarity has a significardentity and low for very similar sequences.
effect on the time requirement. This is in agreement with previousOur results also indicate thais quite a robust parameter and
observations made on protein sequences using a similar modettwdt a variation of one or two around the optimal value has little
alignment £3). The complexity of the gap pattern (as seen froneffect on the actual quality of the alignment. Such a robustness
the point of view of the operators) tends to increase with theeans that one can perform a dynamic programming alignment
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beforehand, measure the distance (using Kimura or any otHast stage, considering the area in between the anchor points,
scheme) and deduce from this a reasonibleor instance)  RNAlign performs a complex dynamic programming that takes
should be set to 1 for closely related sequences (distance <th® account both primary and secondary structure constraints.
estimated substitutions/site), 3 for more distantly related paifghis dynamic programming is very intensive in terms of time
(distance <1) and 5 for more remote homologues (distance >TD(M2N3)] and memory [O{12N2)]. This means that when trying
to align sequences with low levels of identity the setting of anchor
Comparison with dynamic programming points is difficult and leads the program to re-align stretches of the
alignment much too long to be handled in that way. In practice,
The new alignments generated with PRAGA were compared withe longer the sequences, the more similar they need to be for
those obtained by dynamic programming. In all cases@Figble  RNAlign to align them. To overcome these limitations the authors
1) we found that using our method leads to a significanise a multiple alignment (Bank) instead of a single master
improvement over the dynamic programming approach regardlessquence. From this multiple alignment they remove areas of very
of the comparison measure. Although both methods follow the sarfwev identity by a semi-automatic method and then use this
trend and decrease in accuracy when the slave/master distaresuced profile in RNAlign.
increases, PRAGA is clearly less affected than dynamic
programming. The accuracy of the alignments produced by PRAGAomputation of pseudoknots
is also clearly a function of the slave/master structural similarity. For ) ) ) ]
instance, let us consider test cases 6-9. These alignments Haggudoknots are structures that involve interaction of a loop with
comparable distances (1.23-1.33 estimated substitutions/si@)domain on the'3or 5-side of its stem1(,37). They can be
therefore it seems that the factor responsible for the lower accur&gnsidered as RNA tertiary motifs. Computationally, prediction
observed for 6 and 8 is mostly due to the fact that in these alignmeffseudoknots is very difficult using traditional approacB8ks (

the level of conservation of secondary structure is lower than forl? their method Corpet and Michotl§) had to exclude
and 9 (see column ‘pairs’ in Tabl pseudoknots. It is interesting to notice that in the case of PRAGA

there is no real distinction between a pseudoknot and any other

type of Watson—Crick interaction. This means that the algorithm
Comparison with RNAlign should have no more difficulty in aligning pseudoknots than

normal stems. In the previous experiments, in order to remain
An attempt was made to align each of the nine test cases using tbesistent with RNAlign, we excluded these interactions from the
program RNAlign {8). This was done on a Pentium PC withmaster structure. In order to demonstrate the ability of PRAGA
64 MB memory. Only two of the test cases (3 and 5) could ke deal with such structures we re-introduced some of them. We
aligned successfully. All the others caused the machine to run outoofly considered pseudoknots involving more than two residues
memory or the program to issue a warning message. For 3 and 5ame associated through Watson—Crick interactions. By doing so
tunedA as we did for PRAGA. The optimal values found were thé is possible to add 6 bp to the previously used structure. These
same as those reported with the GA. We found RNAIign alignmeritgse pairs are boxed in green in Figltaeand b.
to be roughly similar to PRAGA with the three measures (for The GA was then used with this new master structure, sktting
instance measure m3 gave 89.3% for test case 3 and 68.6 fort®)the optimal value previously reported. The experiment was
These results are quite consistent with those obtained with PRAG&rformed on four of the test cases (4, 6, 7 and 9) and the results
(Table 1) and constitute one more piece of evidence that there given in Tabl@. They show unambiguously that our program
optimization procedure is accurately performed by our program. can efficiently use pseudoknot information in order to improve the

The reason why the other test cases could not be aligned haalignment. It should be noted that the computation of pseudoknots

do with the way RNAlign works. It first produces a dynamichas no noticeable effect on the algorithmic complexity previously
programming alignment with local gap penalties. In the secondiscussed. The fact that even without having pseudoknots present
stage it identifies some ‘anchor points’ in this alignment. Thesia the master structure (TatdlePRAGA—PN) PRAGA improves
are regions of the alignment that can be considered as corredtig alignment is due to the constraint imposed by other structures
aligned, using some conservative evaluation scheme. During timethe vicinity of these pseudoknots (see Fg.

Table 2.Incorporating pseudoknot information

TC Distance m2 (residues) m3 (%)
DP PRAGA PRAGA DP PRAGA PRAGA
(Struc —PN) (Struc +PN) (Struc —PN) (Struc +PN)
4 0.43 0.00 0.00 0.00 100 100 100
6 1.23 2.80 0.61 0.00 16.6 50.0 100
7 1.26 4.90 0.25 0.00 0.00 50.0 100
9 1.33 135 0.20 0.00 0.00 66.6 100

Alignments were made incorporating into the master structure some of the positions known to form a pseudoknot (greeigboxes in F
These positions make a total of six new pairs of nucleotides. The alignments were compared to the reference for their ez nesely

added positions. m2 and m3 were calculated on the new pairs. The results (Struc +PN) were compared with those obtainied by dynam
programming with local gap penalties (DP) and by PRAGA without the pseudoknot information (Struc —PN).
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DISCUSSION sequence. We are currently investigating ways of maximizing the
information that can be extracted from such alignments (sequence

PRAGA is a powerful tool for RNA alignment. Using existing weighting, local penalties, local substitution schemes, use of
structures allowed us to predict quite accurately the core structisecondary structure, etc.). Using a GA gives us a lot of freedom
of several ribosomal sequences, even those remotely related toiththe design of the OF. In practice, almost any type of constraint
sequence for which the master structure was known. We also information can be built into an OF and used for optimization
show that this type of analysis can capture some of the tertigoyrposes. This could include, for instance, SCFG-based functions,
properties of the folding, such as pseudoknot interactions.  which have sounder theoretical justifications than the function we
The next step with PRAGA will be implementation of an OFhave been using hergd). Another possible extension of PRAGA
that allows the use of a whole alignment instead of a single masteould be to use the alignment to predict non-conserved stems
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